{"title":"Mechanisms of the Antimicrobial Action of Fatty Acids: A Review","authors":"E. S. Obukhova, S. A. Murzina","doi":"10.1134/S0003683824605158","DOIUrl":null,"url":null,"abstract":"<p>Among the diverse biological activities of fatty acids (<b>FAs</b>), the ability to kill or inhibit the growth of microorganisms can be distinguished. Even though the antibacterial mechanisms of fatty acids are not fully understood, the most common target of action is the cell membrane, where FAs mediate an increase in permeability and subsequent cell lysis, leading to disruption of the electron transport chain, uncoupling of oxidative phosphorylation, and inhibition of enzymatic activity and nutrient intake. In addition to acting on cell membranes, FAs can disrupt the metabolic processes of microorganisms, inhibit DNA/RNA replication, and affect the expression of virulence genes. In addition, nontraditional mechanisms of the antimicrobial action of FAs are currently being described, such as the inhibition of horizontal gene transfer, quorum sensing, and the disruption of the efflux pump. The variety of antimicrobial mechanisms and the wide range of their activity determine the high biotechnological potential of fatty acids and make further studies of the mechanisms of action on biological systems relevant.</p>","PeriodicalId":466,"journal":{"name":"Applied Biochemistry and Microbiology","volume":"60 6","pages":"1035 - 1043"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S0003683824605158","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the diverse biological activities of fatty acids (FAs), the ability to kill or inhibit the growth of microorganisms can be distinguished. Even though the antibacterial mechanisms of fatty acids are not fully understood, the most common target of action is the cell membrane, where FAs mediate an increase in permeability and subsequent cell lysis, leading to disruption of the electron transport chain, uncoupling of oxidative phosphorylation, and inhibition of enzymatic activity and nutrient intake. In addition to acting on cell membranes, FAs can disrupt the metabolic processes of microorganisms, inhibit DNA/RNA replication, and affect the expression of virulence genes. In addition, nontraditional mechanisms of the antimicrobial action of FAs are currently being described, such as the inhibition of horizontal gene transfer, quorum sensing, and the disruption of the efflux pump. The variety of antimicrobial mechanisms and the wide range of their activity determine the high biotechnological potential of fatty acids and make further studies of the mechanisms of action on biological systems relevant.
期刊介绍:
Applied Biochemistry and Microbiology is an international peer reviewed journal that publishes original articles on biochemistry and microbiology that have or may have practical applications. The studies include: enzymes and mechanisms of enzymatic reactions, biosynthesis of low and high molecular physiologically active compounds; the studies of their structure and properties; biogenesis and pathways of their regulation; metabolism of producers of biologically active compounds, biocatalysis in organic synthesis, applied genetics of microorganisms, applied enzymology; protein and metabolic engineering, biochemical bases of phytoimmunity, applied aspects of biochemical and immunochemical analysis; biodegradation of xenobiotics; biosensors; biomedical research (without clinical studies). Along with experimental works, the journal publishes descriptions of novel research techniques and reviews on selected topics.