Properties of Al0.5CoCrFeNi2Ti High-Entropy Alloy System: From Gas-Atomized Powders to Atmospheric Plasma-Sprayed Coatings

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Tzu-Tang Lin, Shih-Hsun Chen, Chun Chiu
{"title":"Properties of Al0.5CoCrFeNi2Ti High-Entropy Alloy System: From Gas-Atomized Powders to Atmospheric Plasma-Sprayed Coatings","authors":"Tzu-Tang Lin,&nbsp;Shih-Hsun Chen,&nbsp;Chun Chiu","doi":"10.1007/s11666-024-01877-2","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of the Al<sub>0.5</sub>CoCrFeNi<sub>2</sub>Ti HEA atmospheric plasma-sprayed coating was extended from characterizing the properties of its powder prepared via the gas atomization method. It was observed that the gas-atomized HEA powders possessed a solid solution BCC phase, while a major phase transformation to a FCC-L2<sub>1</sub> intermetallic phase occurred during the annealing process. The formation of the intermetallic phase resulted in an increase in average hardness from 6.28 to 7.64 GPa after annealing at 900 °C for 1 h. Afterward, HEA powders were applied in the atmospheric plasma spray technology. The phase constitution of Al<sub>0.5</sub>CoCrFeNi<sub>2</sub>Ti HEA coatings was investigated by varying powder size and applied current. It was observed that the smaller powder sizes prone to oxidation, whereas higher applied current facilitated the phase transformation from BCC to FCC phase. The nanoindentation test indicated distinct average microhardness values for the interlamellar oxide region, BCC unmelted particle and FCC phase lamellar region, which was measured at 12.35, 8.68 and 5.97 GPa, respectively. As a result, the adjustability of coating hardness was achieved by manipulating the relative phase ratio.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2839 - 2852"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01877-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01877-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of the Al0.5CoCrFeNi2Ti HEA atmospheric plasma-sprayed coating was extended from characterizing the properties of its powder prepared via the gas atomization method. It was observed that the gas-atomized HEA powders possessed a solid solution BCC phase, while a major phase transformation to a FCC-L21 intermetallic phase occurred during the annealing process. The formation of the intermetallic phase resulted in an increase in average hardness from 6.28 to 7.64 GPa after annealing at 900 °C for 1 h. Afterward, HEA powders were applied in the atmospheric plasma spray technology. The phase constitution of Al0.5CoCrFeNi2Ti HEA coatings was investigated by varying powder size and applied current. It was observed that the smaller powder sizes prone to oxidation, whereas higher applied current facilitated the phase transformation from BCC to FCC phase. The nanoindentation test indicated distinct average microhardness values for the interlamellar oxide region, BCC unmelted particle and FCC phase lamellar region, which was measured at 12.35, 8.68 and 5.97 GPa, respectively. As a result, the adjustability of coating hardness was achieved by manipulating the relative phase ratio.

Al0.5CoCrFeNi2Ti 高熵合金体系的性能:从气体雾化粉末到大气等离子喷涂涂层
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信