Plasma-Sprayed La0.2Sr0.8MnO3-La0.3Sr0.7TiO3 Bilayer Coatings Along with the Interface Healing Processing Applied as the High Dense Interconnector for Tubular Solid Oxide Fuel Cells
IF 3.2 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"Plasma-Sprayed La0.2Sr0.8MnO3-La0.3Sr0.7TiO3 Bilayer Coatings Along with the Interface Healing Processing Applied as the High Dense Interconnector for Tubular Solid Oxide Fuel Cells","authors":"Juan Xie, Xin Zhang, Cheng-Xin Li, Shan-Lin Zhang","doi":"10.1007/s11666-024-01859-4","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma spraying, an important coating and film preparation technology, provides a crucial method for depositing ceramic-based interconnects on tubular solid oxide fuel cells. However, traditional plasma-sprayed ceramic coatings exhibit typical lamellar porous structures with numerous unbound interfaces and gas-permeable channels, which makes it difficult to meet the microstructural requirements to prevent the leakage of fuel gas and oxidizing gas. This leads to the lower conductivity of the coating compared to the sintered bulk, and results in increased ohmic resistance and reduced output performance. To improve the interface bonding and conductivity of plasma-sprayed La<sub>0.2</sub>Sr<sub>0.8</sub>MnO<sub>3</sub>-La<sub>0.3</sub>Sr<sub>0.7</sub>TiO<sub>3</sub> (LSM-LST) bilayer interconnects for tubular cells, a Co<sub>3</sub>O<sub>4</sub> healing additive was added to the gap interfaces within the LST and LSM coatings. Results showed that metallurgical healing occurred at unbound interfaces and microcracks due to the liquid-phase sintering mechanism, and a bulk-like dense microstructure was obtained at a lower temperature (1200 °C) compared to the dense sintering temperature of the bulk. Moreover, the gas leakage rates of the stable coatings after interface healing were > 1 order of magnitude lower than that of the as-sprayed coatings. Additionally, their electrical conductivity was more than twice that of the as-sprayed coatings, which meets the microstructural and performance requirements of tubular cell interconnects.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2711 - 2722"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01859-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma spraying, an important coating and film preparation technology, provides a crucial method for depositing ceramic-based interconnects on tubular solid oxide fuel cells. However, traditional plasma-sprayed ceramic coatings exhibit typical lamellar porous structures with numerous unbound interfaces and gas-permeable channels, which makes it difficult to meet the microstructural requirements to prevent the leakage of fuel gas and oxidizing gas. This leads to the lower conductivity of the coating compared to the sintered bulk, and results in increased ohmic resistance and reduced output performance. To improve the interface bonding and conductivity of plasma-sprayed La0.2Sr0.8MnO3-La0.3Sr0.7TiO3 (LSM-LST) bilayer interconnects for tubular cells, a Co3O4 healing additive was added to the gap interfaces within the LST and LSM coatings. Results showed that metallurgical healing occurred at unbound interfaces and microcracks due to the liquid-phase sintering mechanism, and a bulk-like dense microstructure was obtained at a lower temperature (1200 °C) compared to the dense sintering temperature of the bulk. Moreover, the gas leakage rates of the stable coatings after interface healing were > 1 order of magnitude lower than that of the as-sprayed coatings. Additionally, their electrical conductivity was more than twice that of the as-sprayed coatings, which meets the microstructural and performance requirements of tubular cell interconnects.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.