Mauricio Nango-Blanco, Natalia Brizuela-Colmenares, Sebastián Pérez, Iván F. Bedoya-Trujillo, Angélica M. Benítez-Castro, Luis A. Cáceres-Díaz, Juan Muñoz-Saldaña
{"title":"Oxynitrided Ti-6Al-4V Coatings Deposited by Twin Wire Arc Spray for Protection of Aluminum Die-Casting Molds","authors":"Mauricio Nango-Blanco, Natalia Brizuela-Colmenares, Sebastián Pérez, Iván F. Bedoya-Trujillo, Angélica M. Benítez-Castro, Luis A. Cáceres-Díaz, Juan Muñoz-Saldaña","doi":"10.1007/s11666-024-01881-6","DOIUrl":null,"url":null,"abstract":"<div><p>Steel molds used for aluminum die-casting often fail due to excessive wear or cracking phenomena associated with the soldering effect in contact with molten aluminum, which leads to the formation of iron-based intermetallic compounds and causes problems in the cast components. One solution is to apply protective coatings whose composition is less reactive with the molten aluminum and improve its hardness, toughness, wear, and corrosion resistance, thus prolonging its service life. This work evaluates the effectiveness of Ti-6Al-4V coatings deposited by twin wire arc spraying in an air or nitrogen atmosphere. Nitrogen was used as the carrier and shielding gas for the in-flight molten particles. Coatings were deposited by varying the stand-off distance, the nitrogen gas pressures, and the substrate temperature. The microstructure of the coatings is interlayered, one porous layer of dendrites and one highly densified layer. The presence of TiN, TiO<sub>2</sub>, <i>α</i>-Ti, and <i>β</i>-Ti phases was confirmed by different characterization methods. For instance, x-ray photoelectron spectroscopy measurements confirmed the presence of N-Ti, O-Ti, and N-O bonds, with the oxygen/nitrogen/titanium percentage associated with the formation of a non-stoichiometric (Ti, Al, V)N<sub>x</sub>O<sub>y</sub> phase. Finally, the reactivity of selected oxynitrided Ti-6Al-4V coating in contact with molten aluminum showed a low reaction rate compared to the coarse reaction layer suffered by the uncoated steel substrates.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2801 - 2814"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11666-024-01881-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01881-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Steel molds used for aluminum die-casting often fail due to excessive wear or cracking phenomena associated with the soldering effect in contact with molten aluminum, which leads to the formation of iron-based intermetallic compounds and causes problems in the cast components. One solution is to apply protective coatings whose composition is less reactive with the molten aluminum and improve its hardness, toughness, wear, and corrosion resistance, thus prolonging its service life. This work evaluates the effectiveness of Ti-6Al-4V coatings deposited by twin wire arc spraying in an air or nitrogen atmosphere. Nitrogen was used as the carrier and shielding gas for the in-flight molten particles. Coatings were deposited by varying the stand-off distance, the nitrogen gas pressures, and the substrate temperature. The microstructure of the coatings is interlayered, one porous layer of dendrites and one highly densified layer. The presence of TiN, TiO2, α-Ti, and β-Ti phases was confirmed by different characterization methods. For instance, x-ray photoelectron spectroscopy measurements confirmed the presence of N-Ti, O-Ti, and N-O bonds, with the oxygen/nitrogen/titanium percentage associated with the formation of a non-stoichiometric (Ti, Al, V)NxOy phase. Finally, the reactivity of selected oxynitrided Ti-6Al-4V coating in contact with molten aluminum showed a low reaction rate compared to the coarse reaction layer suffered by the uncoated steel substrates.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.