Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Sreejith Padinhatteeri, A. N. Ramaprakash, Durgesh Tripathi, Soumya Roy, Gazi A. Ahmed, Rwitika Chatterjee, Avyarthana Ghosh, Sankarasubramanian K., Aafaque Khan, Nidhi Mehandiratta, Netra Pillai, Swapnil Singh
{"title":"Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1.","authors":"Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Sreejith Padinhatteeri, A. N. Ramaprakash, Durgesh Tripathi, Soumya Roy, Gazi A. Ahmed, Rwitika Chatterjee, Avyarthana Ghosh, Sankarasubramanian K., Aafaque Khan, Nidhi Mehandiratta, Netra Pillai, Swapnil Singh","doi":"10.1007/s10686-024-09973-5","DOIUrl":null,"url":null,"abstract":"<div><p>The Solar Ultraviolet Imaging Telescope (<i>SUIT </i>) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of <i>SUIT </i>to effectively capture critical solar features in the anticipated layer of the solar atmosphere.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09973-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Solar Ultraviolet Imaging Telescope (SUIT ) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of SUIT to effectively capture critical solar features in the anticipated layer of the solar atmosphere.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.