B. Z. Garmaev, S. M. Bronnikova, I. A. Yuzhakov, K. V. Zobov, S. P. Bardakhanov, A. V. Nomoev
{"title":"The Speed of Sound in Nanopowder Created by High-Energy Electron Beam","authors":"B. Z. Garmaev, S. M. Bronnikova, I. A. Yuzhakov, K. V. Zobov, S. P. Bardakhanov, A. V. Nomoev","doi":"10.1134/S1027451024700939","DOIUrl":null,"url":null,"abstract":"<p>The work is devoted to a technique for measuring the speed of sound when passing through a thick layer of “poured” nanopowder in an immersed state. A simple experimental setup is proposed consisting of two speakers and one microphone immersed in a container with a nanosized powder. The setup does not require calibration. Two indirect methods for determining speed in the nanopowder using two speakers and a microphone located at different distances from the speakers are shown. Experimental measurements are carried out in a silicon dioxide nanopowder with an average particle size of about 50 nm. It has been established that the speed of sound in this medium is less than that in gas and solid matter and is equal to 35 m/s. It has been shown that the speed of sound does not depend on the frequency of sound for frequencies up to 1600 Hz. A new hypothesis has been proposed that the nanopowder behaves like a new type of continuous medium, “heavy gas,” when a sound wave passes through it. The hypothesis allows one to apply formulas for determining the speed of sound in gas for this case. Based on experimental data, the adiabatic constant for the “heavy gas” is estimated. The proposed application of the effective medium approximation, such as the Hertz–Mindlin contact theory, to estimate the speed of sound in nanopowder shows that the nanoparticles are not in close contact with each other. This can be explained by the inapplicability of this theory to the case of “poured” nanopowder due to the packing of nanoparticles that differs from the theory.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 5","pages":"1128 - 1134"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024700939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The work is devoted to a technique for measuring the speed of sound when passing through a thick layer of “poured” nanopowder in an immersed state. A simple experimental setup is proposed consisting of two speakers and one microphone immersed in a container with a nanosized powder. The setup does not require calibration. Two indirect methods for determining speed in the nanopowder using two speakers and a microphone located at different distances from the speakers are shown. Experimental measurements are carried out in a silicon dioxide nanopowder with an average particle size of about 50 nm. It has been established that the speed of sound in this medium is less than that in gas and solid matter and is equal to 35 m/s. It has been shown that the speed of sound does not depend on the frequency of sound for frequencies up to 1600 Hz. A new hypothesis has been proposed that the nanopowder behaves like a new type of continuous medium, “heavy gas,” when a sound wave passes through it. The hypothesis allows one to apply formulas for determining the speed of sound in gas for this case. Based on experimental data, the adiabatic constant for the “heavy gas” is estimated. The proposed application of the effective medium approximation, such as the Hertz–Mindlin contact theory, to estimate the speed of sound in nanopowder shows that the nanoparticles are not in close contact with each other. This can be explained by the inapplicability of this theory to the case of “poured” nanopowder due to the packing of nanoparticles that differs from the theory.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.