Remarks on Mod-2 Elliptic Genus

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Yuji Tachikawa, Mayuko Yamashita, Kazuya Yonekura
{"title":"Remarks on Mod-2 Elliptic Genus","authors":"Yuji Tachikawa,&nbsp;Mayuko Yamashita,&nbsp;Kazuya Yonekura","doi":"10.1007/s00220-024-05202-4","DOIUrl":null,"url":null,"abstract":"<div><p><b>For physicists:</b> For supersymmetric quantum mechanics, there are cases when a mod-2 Witten index can be defined, even when a more ordinary <span>\\(\\mathbb {Z}\\)</span>-valued Witten index vanishes. Similarly, for 2d supersymmetric quantum field theories, there are cases when a mod-2 elliptic genus can be defined, even when a more ordinary elliptic genus vanishes. We study such mod-2 elliptic genera in the context of <span>\\(\\mathcal {N}{=}(0,1)\\)</span> supersymmetry, and show that they are characterized by mod-2 reductions of integral modular forms, under some assumptions. <b>For mathematicians:</b> We study the image of the standard homomorphism </p><div><div><span>$$\\begin{aligned} \\pi _n\\textrm{TMF}\\rightarrow \\pi _n\\textrm{KO}((q))\\simeq \\mathbb {Z}/2((q)) \\end{aligned}$$</span></div></div><p>for <span>\\(n=8k+1\\)</span> or <span>\\(8k+2\\)</span>, by relating them to the mod-2 reductions of integral modular forms.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-024-05202-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05202-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For physicists: For supersymmetric quantum mechanics, there are cases when a mod-2 Witten index can be defined, even when a more ordinary \(\mathbb {Z}\)-valued Witten index vanishes. Similarly, for 2d supersymmetric quantum field theories, there are cases when a mod-2 elliptic genus can be defined, even when a more ordinary elliptic genus vanishes. We study such mod-2 elliptic genera in the context of \(\mathcal {N}{=}(0,1)\) supersymmetry, and show that they are characterized by mod-2 reductions of integral modular forms, under some assumptions. For mathematicians: We study the image of the standard homomorphism

$$\begin{aligned} \pi _n\textrm{TMF}\rightarrow \pi _n\textrm{KO}((q))\simeq \mathbb {Z}/2((q)) \end{aligned}$$

for \(n=8k+1\) or \(8k+2\), by relating them to the mod-2 reductions of integral modular forms.

关于模-2椭圆属的评论
对于物理学家来说对于超对称量子力学来说,有些情况下可以定义模-2维滕指数,即使更普通的(\mathbb {Z}\)值维滕指数消失了。同样,对于二维超对称量子场论,即使更普通的椭圆属消失了,也有可以定义模-2椭圆属的情况。我们在 \(\mathcal {N}{=}(0,1)\) 超对称的背景下研究了这种模-2椭圆属,并证明在一些假设条件下,它们的特征是积分模形式的模-2还原。对于数学家我们研究了标准同态 $$\begin{aligned} 的图像。\pi _n\textrm{TMF}\rightarrow \pi _n\textrm{KO}((q))\simeq \mathbb {Z}/2((q))\end{aligned}$$对于 (n=8k+1\)或 (8k+2\),通过将它们与积分模形式的 mod-2 还原联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信