Majed A. Nattiq, Abadhar R. Ahmed, Jenan M. Al-Mukh
{"title":"The role of laser field in the electron transport through serially coupled double-quantum dots","authors":"Majed A. Nattiq, Abadhar R. Ahmed, Jenan M. Al-Mukh","doi":"10.1140/epjb/s10051-024-00833-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a mathematical model is developed to study the transport properties of a system consisting of serially coupled double-quantum dots embedded between two nonmagnetic leads in the presence of a laser field effect on double-quantum dots. To examine the device properties and develop a spin-dependent analytical formula for the occupancy numbers, related quantum dot energy levels and the molecular virtual levels, the treatment in this research is based on the time-independent Anderson–Newns model. These formulas are solved self-consistently to compute the tunneling current which is utilized to calculate the differential conductance “Our calculations focus on the strong regime”. All the parameters that included in our calculations can be tuned experimentally. It is found that the electron transport through the system is enhanced as the frequency of the laser field increases, and the energy window is getting wider too. These results are very important to be applied to nano-devices, since the laser can be used as a tool to assist the transport of electrons through the system.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 12","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00833-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a mathematical model is developed to study the transport properties of a system consisting of serially coupled double-quantum dots embedded between two nonmagnetic leads in the presence of a laser field effect on double-quantum dots. To examine the device properties and develop a spin-dependent analytical formula for the occupancy numbers, related quantum dot energy levels and the molecular virtual levels, the treatment in this research is based on the time-independent Anderson–Newns model. These formulas are solved self-consistently to compute the tunneling current which is utilized to calculate the differential conductance “Our calculations focus on the strong regime”. All the parameters that included in our calculations can be tuned experimentally. It is found that the electron transport through the system is enhanced as the frequency of the laser field increases, and the energy window is getting wider too. These results are very important to be applied to nano-devices, since the laser can be used as a tool to assist the transport of electrons through the system.