Fabrication and characterization of self-powered SnO2/CdTe1-xSex/CdTe photodetectors

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Salih Yılmaz, Bülent M. Başol, İsmail Polat, Tayfur Küçükömeroğlu, Emin Bacaksız
{"title":"Fabrication and characterization of self-powered SnO2/CdTe1-xSex/CdTe photodetectors","authors":"Salih Yılmaz,&nbsp;Bülent M. Başol,&nbsp;İsmail Polat,&nbsp;Tayfur Küçükömeroğlu,&nbsp;Emin Bacaksız","doi":"10.1007/s10854-024-14076-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the self-powered photodetector capabilities of fluorinated tin oxide (FTO)/CdTe₁₋ₓSeₓ/CdTe heterostructures with Se compositions of x = 0.26 and x = 0.39. Structural analysis revealed that substituting Se atoms into Te sites reduced the unit cell volume, indicating successful incorporation. Scanning Electron Microscopy (SEM) analysis demonstrated a significant reduction in surface feature size with increasing Se content, particularly at x = 0.39. Band gap determination via Tauc plot extrapolation showed a band gap of 1.46 eV for CdTe₁₋ₓSeₓ with x = 0.26, which further decreased to 1.38 eV for x = 0.39. Under illumination from blue, green, and red lights at zero bias, the heterostructures exhibited photovoltaic behavior, confirming their potential use as self-powered photodetectors (PDs). Key performance metrics at zero bias for the FTO/CdTe₁₋ₓSeₓ/CdTe device included a responsivity (R) of 0.006 A/W, detectivity (D*) of 1.1 × 10⁸ Jones, and external quantum efficiency (EQE) of 1.8%, along with the rise and fall times of 17 ms and 21 ms, respectively. Applying an external bias further enhanced these metrics, with the highest R of 2.301 A/W and EQE of 645.3% observed for the x = 0.26 sample at 1 V. Notably, the device with x = 0.39 achieved the highest D* of 2.2 × 10⁹ Jones at 1 V. In conclusion, this work highlighted the potential of FTO/CdTe₁₋ₓSeₓ/CdTe heterostructures as highly efficient and versatile photodetectors, capable of functioning both with and without an external power source, making them promising candidates for next-generation optoelectronic applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 36","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-14076-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the self-powered photodetector capabilities of fluorinated tin oxide (FTO)/CdTe₁₋ₓSeₓ/CdTe heterostructures with Se compositions of x = 0.26 and x = 0.39. Structural analysis revealed that substituting Se atoms into Te sites reduced the unit cell volume, indicating successful incorporation. Scanning Electron Microscopy (SEM) analysis demonstrated a significant reduction in surface feature size with increasing Se content, particularly at x = 0.39. Band gap determination via Tauc plot extrapolation showed a band gap of 1.46 eV for CdTe₁₋ₓSeₓ with x = 0.26, which further decreased to 1.38 eV for x = 0.39. Under illumination from blue, green, and red lights at zero bias, the heterostructures exhibited photovoltaic behavior, confirming their potential use as self-powered photodetectors (PDs). Key performance metrics at zero bias for the FTO/CdTe₁₋ₓSeₓ/CdTe device included a responsivity (R) of 0.006 A/W, detectivity (D*) of 1.1 × 10⁸ Jones, and external quantum efficiency (EQE) of 1.8%, along with the rise and fall times of 17 ms and 21 ms, respectively. Applying an external bias further enhanced these metrics, with the highest R of 2.301 A/W and EQE of 645.3% observed for the x = 0.26 sample at 1 V. Notably, the device with x = 0.39 achieved the highest D* of 2.2 × 10⁹ Jones at 1 V. In conclusion, this work highlighted the potential of FTO/CdTe₁₋ₓSeₓ/CdTe heterostructures as highly efficient and versatile photodetectors, capable of functioning both with and without an external power source, making them promising candidates for next-generation optoelectronic applications.

自供电 SnO2/CdTe1-xSex/CdTe 光电探测器的制作和特性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信