H. Y. Dai, Z. H. Zu, Y. K. Chu, R. J. Cui, Z. D. Han
{"title":"Effect of Phase Transition Type on the Magnetocaloric Effect and Magnetic Hysteresis in Er(Co1-xMnx)2 Laves Alloys","authors":"H. Y. Dai, Z. H. Zu, Y. K. Chu, R. J. Cui, Z. D. Han","doi":"10.1007/s10948-024-06888-2","DOIUrl":null,"url":null,"abstract":"<div><p>As magnetic refrigerants, first-order transition (FOT) and second-order transition (SOT) materials possess distinct advantages and disadvantages. If the phase transition can be tuned to the critical point between FOT and SOT, it may be possible to combine the benefits of both, thereby achieving an outstanding magnetocaloric effect. Here, we demonstrated this approach through phase transition engineering in Er(Co<sub>1-x</sub>Mn<sub>x</sub>)<sub>2</sub> alloys. When <i>x</i> ≤ 0.06, the magnetic phase transition of the samples was FOT, exhibiting a significant magnetic entropy change. However, at <i>x</i> = 0.08, the samples underwent a SOT from ferromagnetic to paramagnetic, leading to a substantial reduction in the magnetocaloric effect. At the critical point of the FOT/SOT border with <i>x</i> = 0.06, the sample exhibited a large magnetic entropy change along with negligible magnetic hysteresis. This work demonstrates that the critical point between FOT and SOT is an effective means of achieving an excellent magnetocaloric effect.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06888-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
As magnetic refrigerants, first-order transition (FOT) and second-order transition (SOT) materials possess distinct advantages and disadvantages. If the phase transition can be tuned to the critical point between FOT and SOT, it may be possible to combine the benefits of both, thereby achieving an outstanding magnetocaloric effect. Here, we demonstrated this approach through phase transition engineering in Er(Co1-xMnx)2 alloys. When x ≤ 0.06, the magnetic phase transition of the samples was FOT, exhibiting a significant magnetic entropy change. However, at x = 0.08, the samples underwent a SOT from ferromagnetic to paramagnetic, leading to a substantial reduction in the magnetocaloric effect. At the critical point of the FOT/SOT border with x = 0.06, the sample exhibited a large magnetic entropy change along with negligible magnetic hysteresis. This work demonstrates that the critical point between FOT and SOT is an effective means of achieving an excellent magnetocaloric effect.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.