Modelling and stability analysis of the permanent magnetic bearing-rotor system under base excitation

IF 2.2 3区 工程技术 Q2 MECHANICS
Jian Zhou, Ziqiang Fang, Siyu He, Qiang Zhang
{"title":"Modelling and stability analysis of the permanent magnetic bearing-rotor system under base excitation","authors":"Jian Zhou,&nbsp;Ziqiang Fang,&nbsp;Siyu He,&nbsp;Qiang Zhang","doi":"10.1007/s00419-024-02741-z","DOIUrl":null,"url":null,"abstract":"<div><p>Permanent magnetic bearings (PMBs) hold great potential for various applications such as artificial heart pumps, space equipment, and flywheels. This is due to their notable advantages, including the absence of mechanical contact, no friction, and no control system requirements. However, in many practical scenarios involving PMBs, the bearing installation base is often subject to external excitation, which can interfere with its stability. Currently, the impact of base excitation on the PMB-rotor system and methods for enhancing the stability of the PMB-rotor system under base excitation remain subjects of investigation. Hence, this study focuses on conducting stability analysis of the PMB-rotor system under the influence of base excitation. Firstly, the theoretical model of PMB based on the Halbach array is established, and then the system dynamics model of PMB-rotor under base excitation is established by using the second Lagrange equation. Finally, according to the established dynamic model, the effects of base excitation parameters, structural parameters, and external damping on the stability of the PMB-rotor system under base excitation are analysed through the root locus method. The research results presented in this study provide a theoretical reference for further engineering applications of PMBs.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"95 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02741-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Permanent magnetic bearings (PMBs) hold great potential for various applications such as artificial heart pumps, space equipment, and flywheels. This is due to their notable advantages, including the absence of mechanical contact, no friction, and no control system requirements. However, in many practical scenarios involving PMBs, the bearing installation base is often subject to external excitation, which can interfere with its stability. Currently, the impact of base excitation on the PMB-rotor system and methods for enhancing the stability of the PMB-rotor system under base excitation remain subjects of investigation. Hence, this study focuses on conducting stability analysis of the PMB-rotor system under the influence of base excitation. Firstly, the theoretical model of PMB based on the Halbach array is established, and then the system dynamics model of PMB-rotor under base excitation is established by using the second Lagrange equation. Finally, according to the established dynamic model, the effects of base excitation parameters, structural parameters, and external damping on the stability of the PMB-rotor system under base excitation are analysed through the root locus method. The research results presented in this study provide a theoretical reference for further engineering applications of PMBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信