Shock Loading of Heat-Treated Cold Spray Deposited Copper

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Jesse G. Callanan, Sara Ricci, Christopher W. Mathews, Daniel T. Martinez, Kendall J. Hollis, Saryu J. Fensin, David R. Jones
{"title":"Shock Loading of Heat-Treated Cold Spray Deposited Copper","authors":"Jesse G. Callanan,&nbsp;Sara Ricci,&nbsp;Christopher W. Mathews,&nbsp;Daniel T. Martinez,&nbsp;Kendall J. Hollis,&nbsp;Saryu J. Fensin,&nbsp;David R. Jones","doi":"10.1007/s11666-024-01875-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cold spray is a dynamic additive manufacturing process which results in a unique microstructure and mechanical properties. This work investigates cold spray deposited material under high strain-rate dynamic loading, and specifically the influence of post-build heat treatment on the material strength when subjected to incipient spallation. As-deposited and heat-treated samples were characterized and subjected to shock loading with a plate impact apparatus; the free-surface velocity was measured during the experiment, and the samples were recovered for postmortem analysis. The test results show that the as-deposited material has little to no strength under high strain-rate tensile loading and breaks into pieces. After a short heat treatment, the material recovers some of its tensile strength (compared to wrought copper) but does not exhibit the expected damage morphology and void distribution. When the heat treatment time is extended to several hours and the temperature is increased, the material exhibits ramp-like shock rise and damage formation that is widely distributed within the sample. This work contributes to a better understanding of the influence of heat treatment on the microstructure and subsequent material strength properties under high strain-rate loading, which is crucial for applications where cold spray is a technique of interest.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2827 - 2838"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01875-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cold spray is a dynamic additive manufacturing process which results in a unique microstructure and mechanical properties. This work investigates cold spray deposited material under high strain-rate dynamic loading, and specifically the influence of post-build heat treatment on the material strength when subjected to incipient spallation. As-deposited and heat-treated samples were characterized and subjected to shock loading with a plate impact apparatus; the free-surface velocity was measured during the experiment, and the samples were recovered for postmortem analysis. The test results show that the as-deposited material has little to no strength under high strain-rate tensile loading and breaks into pieces. After a short heat treatment, the material recovers some of its tensile strength (compared to wrought copper) but does not exhibit the expected damage morphology and void distribution. When the heat treatment time is extended to several hours and the temperature is increased, the material exhibits ramp-like shock rise and damage formation that is widely distributed within the sample. This work contributes to a better understanding of the influence of heat treatment on the microstructure and subsequent material strength properties under high strain-rate loading, which is crucial for applications where cold spray is a technique of interest.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信