Shallow donor impurity states in wurtzite InGaN/GaN coupled quantum wells under built-in electric field, hydrostatic pressure, and strain effects

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guang-Xin Wang, Xiu-Zhi Duan
{"title":"Shallow donor impurity states in wurtzite InGaN/GaN coupled quantum wells under built-in electric field, hydrostatic pressure, and strain effects","authors":"Guang-Xin Wang,&nbsp;Xiu-Zhi Duan","doi":"10.1007/s10825-024-02238-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigated theoretically the hydrogenic donor impurity states in strained wurtzite (In,Ga)N-GaN coupled quantum wells (CQWs). The variational approach is employed to obtain the dependence on built-in electric field (BEF), hydrostatic pressure, indium composition, and structure size of the binding energy of hydrogenic donor impurity (BEHDI). The results reveal that hydrostatic pressure and structure size of the CQWs have a great influence on BEF which affects strongly the BEHDI. With the increment in hydrostatic pressure, the BEF strength of well and barrier layers enhances monotonously. However, by increasing the well width (barrier width), the BEF strength of well layer reduces (enhances) gradually, and that of barrier layers enhances (reduces). Meantime, it reveals that the binding energy (1) enhances linearly as the hydrostatic pressure is increased, (2) is more sensitive to geometrical parameters (width of well and/or barrier), and (3) demonstrates a maximum value as an impurity ion is shifted from one side of the CQWs to the other.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02238-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigated theoretically the hydrogenic donor impurity states in strained wurtzite (In,Ga)N-GaN coupled quantum wells (CQWs). The variational approach is employed to obtain the dependence on built-in electric field (BEF), hydrostatic pressure, indium composition, and structure size of the binding energy of hydrogenic donor impurity (BEHDI). The results reveal that hydrostatic pressure and structure size of the CQWs have a great influence on BEF which affects strongly the BEHDI. With the increment in hydrostatic pressure, the BEF strength of well and barrier layers enhances monotonously. However, by increasing the well width (barrier width), the BEF strength of well layer reduces (enhances) gradually, and that of barrier layers enhances (reduces). Meantime, it reveals that the binding energy (1) enhances linearly as the hydrostatic pressure is increased, (2) is more sensitive to geometrical parameters (width of well and/or barrier), and (3) demonstrates a maximum value as an impurity ion is shifted from one side of the CQWs to the other.

Abstract Image

内置电场、静水压力和应变作用下纤锌矿InGaN/GaN耦合量子阱中的浅层给体杂质态
本文从理论上研究了应变纤锌矿(In,Ga)N-GaN耦合量子阱(CQWs)中氢给体杂质态。采用变分方法得到了内建电场(BEF)、静水压力、铟成分和结构尺寸对含氢给体杂质(BEHDI)结合能的依赖关系。结果表明,静水压力和结构尺寸对射流流场有较大影响,对射流流场有较大影响。随着静水压力的增大,井、障壁层的流场强度单调增大。但随着井宽(势垒宽度)的增大,井层BEF强度逐渐减小(增大),势垒层BEF强度逐渐增大(减小)。同时,结果表明,结合能(1)随着静水压力的增加而线性增加,(2)对几何参数(井和/或势垒宽度)更敏感,(3)当杂质离子从CQWs的一侧转移到另一侧时,结合能达到最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信