{"title":"Dual- and triple-absorber solar cell architecture achieves significant efficiency improvements","authors":"M. T. Islam, Mukaddar Shaikh, Atul Kumar","doi":"10.1007/s10825-024-02271-5","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) are improving in efficiency, but their stability remains a challenge compared to other solar technologies due to the use of hybrid organic–inorganic materials. To overcome this, researchers have shifted focus from methylammonium-based PSCs to more stable cesium (Cs)-based PSCs. By optimizing multi-layer structures to enhance solar spectrum absorption, substantial performance improvements are possible. In this study, we explored single (CsPbIBr<sub>2</sub>), dual (CsPbIBr<sub>2</sub>/KSnI<sub>3</sub>), and triple (CsPbIBr<sub>2</sub>/KSnI<sub>3</sub>/MASnBr<sub>3</sub>) absorber layer designs. The optimization of bilayer and triple-layer PSCs takes into account various factors, such as absorber layer thickness, defect density, and interface defect density for each PSC type. Finally, using the optimal triple-absorber layer combination, we optimized the electron transport layer, hole transport layer, series resistance, and shunt resistance. In this research, we attained impressive efficiencies of 34.22% for the triple-layer solar cell, 20.41% for the bilayer solar cell, and 7.32% for the single-junction PSC. This design approach led to an optimal configuration that showed substantial improvements over the experimental benchmark, including a 7.08% increase in open circuit voltage, a 256.9% increase in short circuit current, a 22.32% increase in fill factor, and a 367.5% increase in efficiency. By meticulously aligning multiple absorber layers in perovskite solar cells, we can unlock new pathways to developing highly efficient solar cells for the future.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02271-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) are improving in efficiency, but their stability remains a challenge compared to other solar technologies due to the use of hybrid organic–inorganic materials. To overcome this, researchers have shifted focus from methylammonium-based PSCs to more stable cesium (Cs)-based PSCs. By optimizing multi-layer structures to enhance solar spectrum absorption, substantial performance improvements are possible. In this study, we explored single (CsPbIBr2), dual (CsPbIBr2/KSnI3), and triple (CsPbIBr2/KSnI3/MASnBr3) absorber layer designs. The optimization of bilayer and triple-layer PSCs takes into account various factors, such as absorber layer thickness, defect density, and interface defect density for each PSC type. Finally, using the optimal triple-absorber layer combination, we optimized the electron transport layer, hole transport layer, series resistance, and shunt resistance. In this research, we attained impressive efficiencies of 34.22% for the triple-layer solar cell, 20.41% for the bilayer solar cell, and 7.32% for the single-junction PSC. This design approach led to an optimal configuration that showed substantial improvements over the experimental benchmark, including a 7.08% increase in open circuit voltage, a 256.9% increase in short circuit current, a 22.32% increase in fill factor, and a 367.5% increase in efficiency. By meticulously aligning multiple absorber layers in perovskite solar cells, we can unlock new pathways to developing highly efficient solar cells for the future.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.