{"title":"PCF-based multi-analyte refractive index sensor for pathogen detection in water","authors":"Mahia Rukhsana Deepti, Md. Aslam Mollah","doi":"10.1007/s10825-024-02239-5","DOIUrl":null,"url":null,"abstract":"<div><p>A photonic crystal fiber (PCF)-based multi-analyte refractive index sensor is introduced in this study for the detection of four waterborne pathogens: <i>Vibrio cholerae</i>, <i>Bacillus anthracis</i>, <i>Escherichia coli</i>, and <i>Enterococcus faecalis</i>. The sensor comprises a tri-core structure with hexagonal rings encased in a silica substrate. Two selective holes are infused with water samples, enabling concurrent detection of two analytes. The sensor integrates liquid-silica mode coupling as its sensing mechanism. The couplings are precisely estimated and numerically evaluated using a finite-element method (FEM)-based simulation tool. The optimization of the sensor’s structural characteristics resulted in wavelength sensitivity of 6386 nm/RIU, 7104 nm/RIU, 8510 nm/RIU, and 3409 nm/RIU for sample pairs of <i>V. cholerae</i>–pure water, <i>V. cholerae</i>–<i>V. cholerae</i>, <i>V. cholerae</i>–<i>B. anthracis</i>, and <i>E. coli</i>–<i>V. cholerae</i>, respectively. Furthermore, the sensor exhibits the highest wavelength resolution of <span>\\(\\text {1.59} \\times \\text {10}^{-5}\\)</span> RIU and figure of merit of 142 <span>\\(\\text {RIU}^{-1}\\)</span> and is also assessed for detection limit, detection accuracy, and signal-to-noise ratio. Featuring a straightforward design and remarkable sensing capabilities, the proposed sensor is anticipated to be exceptionally effective at detecting waterborne pathogens, with potential to excel in identifying chemicals, biomedical substances, and other diverse analytes.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02239-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A photonic crystal fiber (PCF)-based multi-analyte refractive index sensor is introduced in this study for the detection of four waterborne pathogens: Vibrio cholerae, Bacillus anthracis, Escherichia coli, and Enterococcus faecalis. The sensor comprises a tri-core structure with hexagonal rings encased in a silica substrate. Two selective holes are infused with water samples, enabling concurrent detection of two analytes. The sensor integrates liquid-silica mode coupling as its sensing mechanism. The couplings are precisely estimated and numerically evaluated using a finite-element method (FEM)-based simulation tool. The optimization of the sensor’s structural characteristics resulted in wavelength sensitivity of 6386 nm/RIU, 7104 nm/RIU, 8510 nm/RIU, and 3409 nm/RIU for sample pairs of V. cholerae–pure water, V. cholerae–V. cholerae, V. cholerae–B. anthracis, and E. coli–V. cholerae, respectively. Furthermore, the sensor exhibits the highest wavelength resolution of \(\text {1.59} \times \text {10}^{-5}\) RIU and figure of merit of 142 \(\text {RIU}^{-1}\) and is also assessed for detection limit, detection accuracy, and signal-to-noise ratio. Featuring a straightforward design and remarkable sensing capabilities, the proposed sensor is anticipated to be exceptionally effective at detecting waterborne pathogens, with potential to excel in identifying chemicals, biomedical substances, and other diverse analytes.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.