Stable conductive PANI-based hydrogels with antibacterial activity

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Mukhtar Alipuly, Dana Kanzhigitova, Aizada Bexeitova, Perizat Askar, Damira Kanayeva, Salimgerey Adilov, Nurxat Nuraje
{"title":"Stable conductive PANI-based hydrogels with antibacterial activity","authors":"Mukhtar Alipuly,&nbsp;Dana Kanzhigitova,&nbsp;Aizada Bexeitova,&nbsp;Perizat Askar,&nbsp;Damira Kanayeva,&nbsp;Salimgerey Adilov,&nbsp;Nurxat Nuraje","doi":"10.1007/s42114-024-01110-2","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrogels have been utilized in various medical applications, including drug delivery, tissue repair, biosensors, wound dressing, and antimicrobial activity. Electrically conducting hydrogels are particularly promising due to their unique features, such as high-water content, biocompatibility, and adjustable mechanical and electrical properties. In this study, we developed novel conductive polyaniline-based hydrogel systems with enhanced antibacterial and mechanical properties. We specifically investigated the contributions of polyacrylamide, chitosan, phytic acid, and polyaniline to the hydrogel’s electrical sensitivity and stability under strain. Phytic acid and polyaniline were found to significantly improve the hydrogel’s electrical sensitivity and mechanical stability. Phytic acid, in the presence of calcium ions, further enhanced the mechanical properties, while polyaniline increased the electrical conductivity of the hydrogel by approximately sevenfold and also improved its mechanical properties. The newly developed conductive hydrogel system shows great potential for biomedical applications, including wearable sensors.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01110-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01110-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels have been utilized in various medical applications, including drug delivery, tissue repair, biosensors, wound dressing, and antimicrobial activity. Electrically conducting hydrogels are particularly promising due to their unique features, such as high-water content, biocompatibility, and adjustable mechanical and electrical properties. In this study, we developed novel conductive polyaniline-based hydrogel systems with enhanced antibacterial and mechanical properties. We specifically investigated the contributions of polyacrylamide, chitosan, phytic acid, and polyaniline to the hydrogel’s electrical sensitivity and stability under strain. Phytic acid and polyaniline were found to significantly improve the hydrogel’s electrical sensitivity and mechanical stability. Phytic acid, in the presence of calcium ions, further enhanced the mechanical properties, while polyaniline increased the electrical conductivity of the hydrogel by approximately sevenfold and also improved its mechanical properties. The newly developed conductive hydrogel system shows great potential for biomedical applications, including wearable sensors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信