Influence of surface integrity on short crack growth behavior in HFMI-treated welded joints

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Y. Ono, H. Remes
{"title":"Influence of surface integrity on short crack growth behavior in HFMI-treated welded joints","authors":"Y. Ono,&nbsp;H. Remes","doi":"10.1007/s40194-024-01874-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of surface integrity and the localized fatigue phenomena on the initiation and propagation of short fatigue cracks in high-frequency mechanical impact (HFMI)-treated welded joints. The treated surface region, characterized by a compressive residual stress field, smooth notch geometry, and work hardening layer, improves welded joints’ fatigue strength. However, how these surface conditions influence the fatigue damage process zone during short crack initiation and growth is not yet well known. Therefore, this study systematically investigates the influence of different surface characteristics on fatigue life modeling of HFMI-treated welded joints made of high-strength steel. This is achieved using a non-local continuum damage mechanics-based approach of crack growth and elastic–plastic finite element simulation, explicitly modeling treated surface conditions. The simulated fatigue life is first verified with experiments and then applied to various surface conditions. The simulation results show that most of the fatigue life is spent until a crack size of 0.2 mm. The compressive residual stress field greatly extends both short crack initiation and propagation life, with its degree of contribution highly dependent on loading history and residual stress change. The role of the work hardening layer is mainly concentrated on improving fatigue life during short crack initiation and the very beginning of short crack growth.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 1","pages":"227 - 243"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01874-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01874-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the influence of surface integrity and the localized fatigue phenomena on the initiation and propagation of short fatigue cracks in high-frequency mechanical impact (HFMI)-treated welded joints. The treated surface region, characterized by a compressive residual stress field, smooth notch geometry, and work hardening layer, improves welded joints’ fatigue strength. However, how these surface conditions influence the fatigue damage process zone during short crack initiation and growth is not yet well known. Therefore, this study systematically investigates the influence of different surface characteristics on fatigue life modeling of HFMI-treated welded joints made of high-strength steel. This is achieved using a non-local continuum damage mechanics-based approach of crack growth and elastic–plastic finite element simulation, explicitly modeling treated surface conditions. The simulated fatigue life is first verified with experiments and then applied to various surface conditions. The simulation results show that most of the fatigue life is spent until a crack size of 0.2 mm. The compressive residual stress field greatly extends both short crack initiation and propagation life, with its degree of contribution highly dependent on loading history and residual stress change. The role of the work hardening layer is mainly concentrated on improving fatigue life during short crack initiation and the very beginning of short crack growth.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信