Kinetics of Photooxidation of Dihydric Phenols in the Presence of Hydrogen Peroxide and Potassium Persulfate

IF 0.6 4区 化学 Q4 CHEMISTRY, APPLIED
M. A. Vetrova, N. A. Ivantsova, P. R. Karataeva
{"title":"Kinetics of Photooxidation of Dihydric Phenols in the Presence of Hydrogen Peroxide and Potassium Persulfate","authors":"M. A. Vetrova,&nbsp;N. A. Ivantsova,&nbsp;P. R. Karataeva","doi":"10.1134/S1070427224040062","DOIUrl":null,"url":null,"abstract":"<p>Wastewater treatment to remove organic ecotoxicants is one the most important problems today. Scientists’ efforts throughout the world are focused on searching for effective and harmless technologies for the removal and/or complete degradation of organic pollutants. One of the solutions is the use of UV lamps in combination with various oxidants. UV irradiation is widely used in various branches of industry, especially in water treatment. Photolysis methods are environmentally clean and are included in handbooks of the best available technologies. Experiments performed in this study were aimed at revealing kinetic relationships of the photochemical degradation of dihydric phenols in aqueous solutions under the action of active species. All the processes were performed using a flow-through laboratory installation. A 9 W, 254 nm OSMAR special ozone-free bactericidal lamp (Finland) was chosen as a UV radiation source. The residence time of the model solution in the reactor was varied from 20 to 120 s. Quantitative determination of dihydric phenols was performed by the spectrophotometric method. Hydrogen peroxide (3% solution) and potassium persulfate were chosen as oxidizing additives. The potential of the UV radiation and oxidative treatment for efficient removal of dihydric phenols from water was evaluated. Photooxidation of pyrocatechol, resorcinol, and hydroquinone in aqueous solution in the presence of hydrogen peroxide and potassium persulfate was performed. The oxidants were taken in amount from stoichiometric to fivefold excess relative to the stoichiometry. The photochemical degradation of dihydric phenols can be performed with up to 99% efficiency. At the phenol : oxidant molar ratio of 1 : 5, the photooxidation rate increases by a factor of 3–5. The degradation involves the breakdown of the benzene ring, and the main degradation products of dihydric phenols are monobasic carboxylic acids and formaldehyde.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":"97 4","pages":"441 - 447"},"PeriodicalIF":0.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070427224040062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater treatment to remove organic ecotoxicants is one the most important problems today. Scientists’ efforts throughout the world are focused on searching for effective and harmless technologies for the removal and/or complete degradation of organic pollutants. One of the solutions is the use of UV lamps in combination with various oxidants. UV irradiation is widely used in various branches of industry, especially in water treatment. Photolysis methods are environmentally clean and are included in handbooks of the best available technologies. Experiments performed in this study were aimed at revealing kinetic relationships of the photochemical degradation of dihydric phenols in aqueous solutions under the action of active species. All the processes were performed using a flow-through laboratory installation. A 9 W, 254 nm OSMAR special ozone-free bactericidal lamp (Finland) was chosen as a UV radiation source. The residence time of the model solution in the reactor was varied from 20 to 120 s. Quantitative determination of dihydric phenols was performed by the spectrophotometric method. Hydrogen peroxide (3% solution) and potassium persulfate were chosen as oxidizing additives. The potential of the UV radiation and oxidative treatment for efficient removal of dihydric phenols from water was evaluated. Photooxidation of pyrocatechol, resorcinol, and hydroquinone in aqueous solution in the presence of hydrogen peroxide and potassium persulfate was performed. The oxidants were taken in amount from stoichiometric to fivefold excess relative to the stoichiometry. The photochemical degradation of dihydric phenols can be performed with up to 99% efficiency. At the phenol : oxidant molar ratio of 1 : 5, the photooxidation rate increases by a factor of 3–5. The degradation involves the breakdown of the benzene ring, and the main degradation products of dihydric phenols are monobasic carboxylic acids and formaldehyde.

Abstract Image

过氧化氢和过硫酸钾存在下双水酚光氧化动力学
废水处理去除有机生态毒物是当今最重要的问题之一。全世界的科学家都在努力寻找有效和无害的技术来去除和/或完全降解有机污染物。解决方案之一是将紫外线灯与各种氧化剂结合使用。紫外辐射广泛应用于各个工业部门,特别是在水处理方面。光解方法对环境是清洁的,并被列入现有最佳技术的手册中。本研究旨在揭示活性物质作用下水溶液中二氢酚光化学降解的动力学关系。所有的过程都是通过流动实验室装置进行的。紫外辐射源选用9w、254nm芬兰OSMAR专用无臭氧杀菌灯。模型溶液在反应器中的停留时间为20 ~ 120s。采用分光光度法对二水酚进行了定量测定。过氧化氢(3%溶液)和过硫酸钾作为氧化助剂。评价了紫外辐射和氧化处理有效去除水中二氢酚的潜力。在过氧化氢和过硫酸钾存在下,对邻苯二酚、间苯二酚和对苯二酚在水溶液中的光氧化进行了研究。氧化剂的量从化学计量量到相对于化学计量量的五倍过量。对二水酚的光化学降解效率可达99%。当苯酚与氧化剂的摩尔比为1:5时,光氧化速率增加了3-5倍。二羟基酚的降解涉及苯环的分解,其主要降解产物为一元羧酸和甲醛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
63
审稿时长
2-4 weeks
期刊介绍: Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信