{"title":"Quantum Tunneling With Linear Potential: Case Studies in Biological Processes","authors":"Phuong-Nam Nguyen","doi":"10.1109/TMBMC.2024.3471189","DOIUrl":null,"url":null,"abstract":"Quantum biology, at the intersection of quantum mechanics and biology, investigates the involvement of quantum phenomena in biological processes. A pivotal focus is quantum tunneling, wherein particles traverse energy barriers, a phenomenon with potential significance in various biological contexts. This article introduces a new class of linear potential functions for studying quantum tunneling in biological processes. The simplicity of linear potentials enables analytical solutions to the Schrödinger equation, offering efficiency compared to more complex numerical methods. The proposed linear potential functions are derived using parabolic curves, providing an analytical form with physical interpretations. The corresponding energy function and transmission coefficients are presented, facilitating a simplified understanding of tunneling behavior. Theoretical implications of the proposed model are discussed, emphasizing the ease of parameter variation and its applicability to diverse biological scenarios. In the numerical demonstration, two case studies are presented: (1) examining proton tunneling in DNA point mutations and (2) exploring electron tunneling in biological receptors, specifically the ACE2 receptor in the context of SARS-CoV-2.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"623-632"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10700816/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum biology, at the intersection of quantum mechanics and biology, investigates the involvement of quantum phenomena in biological processes. A pivotal focus is quantum tunneling, wherein particles traverse energy barriers, a phenomenon with potential significance in various biological contexts. This article introduces a new class of linear potential functions for studying quantum tunneling in biological processes. The simplicity of linear potentials enables analytical solutions to the Schrödinger equation, offering efficiency compared to more complex numerical methods. The proposed linear potential functions are derived using parabolic curves, providing an analytical form with physical interpretations. The corresponding energy function and transmission coefficients are presented, facilitating a simplified understanding of tunneling behavior. Theoretical implications of the proposed model are discussed, emphasizing the ease of parameter variation and its applicability to diverse biological scenarios. In the numerical demonstration, two case studies are presented: (1) examining proton tunneling in DNA point mutations and (2) exploring electron tunneling in biological receptors, specifically the ACE2 receptor in the context of SARS-CoV-2.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.