Conditioned Adaptive Barrier Function Based Integral Super-Twisting Sliding Mode Control for Electric Vehicles With Hybrid Energy Storage System

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Afaq Ahmed;Iftikhar Ahmad;Habibur Rehman;Ammar Hasan
{"title":"Conditioned Adaptive Barrier Function Based Integral Super-Twisting Sliding Mode Control for Electric Vehicles With Hybrid Energy Storage System","authors":"Afaq Ahmed;Iftikhar Ahmad;Habibur Rehman;Ammar Hasan","doi":"10.1109/OJVT.2024.3509686","DOIUrl":null,"url":null,"abstract":"This paper proposes a conditioned adaptive barrier function-based integral super-twisting sliding mode controller for the hybrid energy storage system (HESS) with a field-oriented control of 3-phase induction motor for the electric vehicles (EVs). The conditioned approach ensures that the control input stays within bounds, the adaptive barrier adjusts the sliding mode controller (SMC) gains, and the super-twisting technique helps in reducing the chattering. Consequently, the overall system performance is improved. The HESS consists of a fuel cell, battery, and super-capacitor. A rule-based energy management system has been designed, defining different modes of operation for an efficient use of energy sources under different loading conditions. The designed energy management system accounts for the power inflow and the status of the energy sources. The proposed controller ensures smooth energy sources current tracking and stabilizes the DC bus voltage while controlling the motor speed and flux under various operating conditions. The controller's global asymptotic stability has been verified through Lyapunov stability analysis. Intensive computer simulations using Matlab/Simulink are performed to validate the proposed controller's performance and compare it with the conventional PI and SMC controllers. Finally, controller hardware-in-the-loop validation has been conducted for the real-time performance validation.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"92-108"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772067","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772067/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a conditioned adaptive barrier function-based integral super-twisting sliding mode controller for the hybrid energy storage system (HESS) with a field-oriented control of 3-phase induction motor for the electric vehicles (EVs). The conditioned approach ensures that the control input stays within bounds, the adaptive barrier adjusts the sliding mode controller (SMC) gains, and the super-twisting technique helps in reducing the chattering. Consequently, the overall system performance is improved. The HESS consists of a fuel cell, battery, and super-capacitor. A rule-based energy management system has been designed, defining different modes of operation for an efficient use of energy sources under different loading conditions. The designed energy management system accounts for the power inflow and the status of the energy sources. The proposed controller ensures smooth energy sources current tracking and stabilizes the DC bus voltage while controlling the motor speed and flux under various operating conditions. The controller's global asymptotic stability has been verified through Lyapunov stability analysis. Intensive computer simulations using Matlab/Simulink are performed to validate the proposed controller's performance and compare it with the conventional PI and SMC controllers. Finally, controller hardware-in-the-loop validation has been conducted for the real-time performance validation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信