Zhao Li;Siyang Jiang;Rui Fu;Yingshi Guo;Chang Wang
{"title":"Driver Gaze Zone Estimation Based on Three-Channel Convolution-Optimized Vision Transformer With Transfer Learning","authors":"Zhao Li;Siyang Jiang;Rui Fu;Yingshi Guo;Chang Wang","doi":"10.1109/JSEN.2024.3486373","DOIUrl":null,"url":null,"abstract":"Driver gaze zone estimation (DGZE) is essential for detecting the driver’s state and taking over rule-making in intelligent driving systems. However, convolutional neural network (CNN)-based multichannel models lack global feature extraction capability, with a large number of parameters and high computational complexity. Therefore, this article proposes a novel method that uses a three-channel convolution-optimized vision transformer (3C-CoViT) to estimate the driver’s gaze zone. The method replaces the linear projection in the pure ViT structure with convolutional projection, converts the input images of different channels into image sequences, and then adds a convolutional feed-forward network to extract the local features of the markers, enhance the correlation of adjacent tokens in spatial dimensions, and improve the performance and efficiency of the model. We then pretrained the model on the GazeCapture dataset based on transfer learning and then fine-tuned the model on the dataset built in the actual road experiment. To enhance the interpretability of the model, we presented a novel visualization method. Experimental results show that the proposed method can accurately identify driver gaze zones (98.04% average accuracy) and outperform state-of-the-art methods in terms of accuracy and reliability. Ablation studies proved the effectiveness of our proposed method over the pure ViT and the beneficial effects of transfer learning and three-channel information input.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"42064-42078"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10740606/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Driver gaze zone estimation (DGZE) is essential for detecting the driver’s state and taking over rule-making in intelligent driving systems. However, convolutional neural network (CNN)-based multichannel models lack global feature extraction capability, with a large number of parameters and high computational complexity. Therefore, this article proposes a novel method that uses a three-channel convolution-optimized vision transformer (3C-CoViT) to estimate the driver’s gaze zone. The method replaces the linear projection in the pure ViT structure with convolutional projection, converts the input images of different channels into image sequences, and then adds a convolutional feed-forward network to extract the local features of the markers, enhance the correlation of adjacent tokens in spatial dimensions, and improve the performance and efficiency of the model. We then pretrained the model on the GazeCapture dataset based on transfer learning and then fine-tuned the model on the dataset built in the actual road experiment. To enhance the interpretability of the model, we presented a novel visualization method. Experimental results show that the proposed method can accurately identify driver gaze zones (98.04% average accuracy) and outperform state-of-the-art methods in terms of accuracy and reliability. Ablation studies proved the effectiveness of our proposed method over the pure ViT and the beneficial effects of transfer learning and three-channel information input.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice