MAP-MAC: A Priority-Based MAC Protocol for MAX Aggregation in Wireless Sensor Networks

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiuxiu Liang;Xin Li;Haibo Yang;Tao Ma
{"title":"MAP-MAC: A Priority-Based MAC Protocol for MAX Aggregation in Wireless Sensor Networks","authors":"Xiuxiu Liang;Xin Li;Haibo Yang;Tao Ma","doi":"10.1109/JSEN.2024.3487876","DOIUrl":null,"url":null,"abstract":"MAX aggregation is a typical data aggregation operation in wireless sensor networks (WSNs). Due to energy constraints, MAX aggregation’s low latency and energy efficiency are critical in emergency applications. As priority-based media access control (MAC) protocols can provide early channel access to high-priority traffic, assigning a higher priority level to data packets close to the MAX value can reduce the MAX value’s delay. Since priority-based MAC protocols fail to offer success channel access strictly in descending order of priority, we still need to collect all data packets to obtain the accurate MAX value. Therefore, this article proposes a new priority-based MAC protocol for MAX aggregation (MAP-MAC), specially designed for cluster topology. MAP-MAC assigns the corresponding priority level to data packets according to the position of the data in the data range. Channel access priority is achieved by setting a corresponding starting clear channel assessment (CCA) detection in the time slot based on priority levels. This article analyzes the range of priorities and their impact on latency and energy consumption. The results show that MAP-MAC reduces the delay of the accurate MAX value by over 65% and energy consumption by over 70%, compared with the benchmark protocols. The analysis presented in this article is expected to provide a reference for setting the range of priorities and further improving the latency and energy consumption performance of WSNs.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"42152-42162"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10750205/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

MAX aggregation is a typical data aggregation operation in wireless sensor networks (WSNs). Due to energy constraints, MAX aggregation’s low latency and energy efficiency are critical in emergency applications. As priority-based media access control (MAC) protocols can provide early channel access to high-priority traffic, assigning a higher priority level to data packets close to the MAX value can reduce the MAX value’s delay. Since priority-based MAC protocols fail to offer success channel access strictly in descending order of priority, we still need to collect all data packets to obtain the accurate MAX value. Therefore, this article proposes a new priority-based MAC protocol for MAX aggregation (MAP-MAC), specially designed for cluster topology. MAP-MAC assigns the corresponding priority level to data packets according to the position of the data in the data range. Channel access priority is achieved by setting a corresponding starting clear channel assessment (CCA) detection in the time slot based on priority levels. This article analyzes the range of priorities and their impact on latency and energy consumption. The results show that MAP-MAC reduces the delay of the accurate MAX value by over 65% and energy consumption by over 70%, compared with the benchmark protocols. The analysis presented in this article is expected to provide a reference for setting the range of priorities and further improving the latency and energy consumption performance of WSNs.
MAP-MAC:一种基于优先级的无线传感器网络MAX聚合MAC协议
MAX聚合是无线传感器网络中一种典型的数据聚合操作。由于能量限制,MAX聚合的低延迟和能量效率在应急应用中至关重要。由于基于优先级的媒体访问控制(MAC)协议可以为高优先级流量提供早期通道访问,因此为接近MAX值的数据包分配更高的优先级级别可以减少MAX值的延迟。由于基于优先级的MAC协议不能严格按照优先级降序提供成功通道访问,因此我们仍然需要收集所有数据包以获得准确的MAX值。因此,本文提出了一种新的基于优先级的MAX聚合MAC协议(MAP-MAC),该协议是专门针对集群拓扑设计的。MAP-MAC协议根据数据在数据范围中的位置为数据包分配相应的优先级。信道访问优先级是通过在时隙中根据优先级级别设置相应的起始清除信道评估(CCA)检测来实现的。本文分析了优先级的范围及其对延迟和能耗的影响。结果表明,与基准协议相比,MAP-MAC协议将准确MAX值的延迟降低了65%以上,能耗降低了70%以上。本文的分析有望为设置优先级范围,进一步提高无线传感器网络的时延和能耗性能提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信