{"title":"Multiday Personal Identification and Authentication Using Electromyogram Signals and Bag-of-Words Classification Models","authors":"Irina Pavel;Iulian B. Ciocoiu","doi":"10.1109/JSEN.2024.3485244","DOIUrl":null,"url":null,"abstract":"This article evaluates the performances of bag-of-words (BoWs) classification models on biometric applications using surface electromyographic (sEMG) signals generated by hand gestures. Extensive tests have been conducted on a publicly available multichannel multisession dataset collected from electrodes placed on the forearm and wrist of 43 persons while performing a set of 16 distinct gestures. FFT-based features extracted from six nonoverlapping frequency bands were combined with a BoW classifier and evaluated on authentication and identification tasks. A systematic ablation study considers the influence of the encoding strategy, the codebook dimension, and the length of the gesture-based password on the performances assessed in terms of the area under curve (AUC), equal error rate (EER), and cumulative match characteristics (CMCs). The definition of the training and test sets considered both within-day (WD) and cross-day scenarios. In the former case, average AUC and EER values indicate almost perfect operation for a password defined by three successive gestures, while CMC analysis showed Rank-5 performances above 99%. In the latter case, average AUC, EER, and Rank-5 CMC exhibited a small degradation of 1.1%, 3.1%, and 3.2%, respectively, showing significant robustness and improved performances against existing solutions.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"42373-42383"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740613","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10740613/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article evaluates the performances of bag-of-words (BoWs) classification models on biometric applications using surface electromyographic (sEMG) signals generated by hand gestures. Extensive tests have been conducted on a publicly available multichannel multisession dataset collected from electrodes placed on the forearm and wrist of 43 persons while performing a set of 16 distinct gestures. FFT-based features extracted from six nonoverlapping frequency bands were combined with a BoW classifier and evaluated on authentication and identification tasks. A systematic ablation study considers the influence of the encoding strategy, the codebook dimension, and the length of the gesture-based password on the performances assessed in terms of the area under curve (AUC), equal error rate (EER), and cumulative match characteristics (CMCs). The definition of the training and test sets considered both within-day (WD) and cross-day scenarios. In the former case, average AUC and EER values indicate almost perfect operation for a password defined by three successive gestures, while CMC analysis showed Rank-5 performances above 99%. In the latter case, average AUC, EER, and Rank-5 CMC exhibited a small degradation of 1.1%, 3.1%, and 3.2%, respectively, showing significant robustness and improved performances against existing solutions.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice