Congyue Zhang;Xiaobo Dou;Jianfeng Zhao;Qinran Hu;Xiangjun Quan
{"title":"Two-Level Coupling-Based Frequency Control Strategy with Adaptive Distributed Frequency Consensus and Dynamic Compensation","authors":"Congyue Zhang;Xiaobo Dou;Jianfeng Zhao;Qinran Hu;Xiangjun Quan","doi":"10.35833/MPCE.2023.000506","DOIUrl":null,"url":null,"abstract":"This paper highlights the inefficiency of most distributed controls in dealing with dynamic enhancement while coordinating distributed generators (DGs), leading to poor frequency dynamics. To address this concern, a two-level coupling-based frequency control strategy for microgrids is proposed in this paper. At the lower level, an adaptive dynamic compensation algorithm is designed to tackle short-term and long-term frequency fluctuations caused by the uncertainties of renewable energy resources (RESs). At the upper level, an adaptive distributed frequency consensus algorithm is developed to address frequency restoration and active power sharing. Furthermore, to account for the potential control interaction of the two designed levels, a nonlinear extended state observer (NESO) is introduced to couple their control dynamics. Simulation tests and hardware-in-the-loop (HIL) experiments confirm the improved frequency dynamics.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"1918-1929"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10478315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10478315/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper highlights the inefficiency of most distributed controls in dealing with dynamic enhancement while coordinating distributed generators (DGs), leading to poor frequency dynamics. To address this concern, a two-level coupling-based frequency control strategy for microgrids is proposed in this paper. At the lower level, an adaptive dynamic compensation algorithm is designed to tackle short-term and long-term frequency fluctuations caused by the uncertainties of renewable energy resources (RESs). At the upper level, an adaptive distributed frequency consensus algorithm is developed to address frequency restoration and active power sharing. Furthermore, to account for the potential control interaction of the two designed levels, a nonlinear extended state observer (NESO) is introduced to couple their control dynamics. Simulation tests and hardware-in-the-loop (HIL) experiments confirm the improved frequency dynamics.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.