{"title":"Grasping Force Estimation for Markerless Visuotactile Sensors","authors":"Julio Castaño-Amoros;Pablo Gil","doi":"10.1109/JSEN.2024.3489052","DOIUrl":null,"url":null,"abstract":"Tactile sensors have been used for force estimation in the past, especially vision-based tactile sensors (VBTSs) have recently become a new trend due to their high spatial resolution and low cost. In this work, we have designed and implemented several approaches to estimate the normal grasping force using different types of markerless visuotactile representations obtained from VBTS. Our main goal is to determine the most appropriate visuotactile representation, based on a performance analysis during robotic grasping tasks. Our proposal has been tested on the dataset generated with our DIGIT sensors and another one obtained using GelSight Mini sensors from another state-of-the-art work. We have also tested the generalization capabilities of our best approach, called RGBmod. The results led to two main conclusions. First, the RGB visuotactile representation is a better input option than the depth image or a combination of the two for estimating normal grasping forces. Second, RGBmod achieved a good performance when tested on ten unseen everyday objects in real-world scenarios, achieving an average relative error (RE) of \n<inline-formula> <tex-math>$0.125~\\pm ~0.153$ </tex-math></inline-formula>\n. Furthermore, we show that our proposal outperforms other works in the literature that use RGB and depth information for the same task.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"42538-42548"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10740944","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10740944/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile sensors have been used for force estimation in the past, especially vision-based tactile sensors (VBTSs) have recently become a new trend due to their high spatial resolution and low cost. In this work, we have designed and implemented several approaches to estimate the normal grasping force using different types of markerless visuotactile representations obtained from VBTS. Our main goal is to determine the most appropriate visuotactile representation, based on a performance analysis during robotic grasping tasks. Our proposal has been tested on the dataset generated with our DIGIT sensors and another one obtained using GelSight Mini sensors from another state-of-the-art work. We have also tested the generalization capabilities of our best approach, called RGBmod. The results led to two main conclusions. First, the RGB visuotactile representation is a better input option than the depth image or a combination of the two for estimating normal grasping forces. Second, RGBmod achieved a good performance when tested on ten unseen everyday objects in real-world scenarios, achieving an average relative error (RE) of
$0.125~\pm ~0.153$
. Furthermore, we show that our proposal outperforms other works in the literature that use RGB and depth information for the same task.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice