Zero Velocity Detection for Pedestrian Inertial Navigation Based on Spatiotemporal Feature Fusion

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinye Wang;Kaiqiang Feng;Jie Li;Xiaoting Guo;Huiyan Han;Shengjie Cao
{"title":"Zero Velocity Detection for Pedestrian Inertial Navigation Based on Spatiotemporal Feature Fusion","authors":"Xinye Wang;Kaiqiang Feng;Jie Li;Xiaoting Guo;Huiyan Han;Shengjie Cao","doi":"10.1109/JSEN.2024.3491161","DOIUrl":null,"url":null,"abstract":"Zero velocity detection is a critical component in zero velocity update (ZUPT)-aided foot-mounted pedestrian navigation systems. Robust and accurate zero velocity detection significantly enhances the precision of pedestrian trajectory estimation. Existing zero velocity detectors based on fixed threshold and gait cycle segmentation techniques struggle to adapt to the complexity and variability of human motion. To address this issue, we propose an adaptive zero velocity detector based on deep learning. The raw inertial data possess spatial features with significant differences and temporal features that conform to certain patterns. This detector utilizes a contrastive learning (CL) network and a long short-term memory (LSTM) neural network (NN) to extract the spatial and temporal features of the inertial data, respectively. Experimental results demonstrate that the detector can achieve adaptive zero velocity detection and improve trajectory estimation accuracy regardless of individual differences or motion types. In two indoor experiments, the 2-D position error is 0.410 m for a mixed walking and running path, and the 3-D position error is 0.546 m for a mixed walking, running, and up/down stairs path.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"41932-41940"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10750166/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Zero velocity detection is a critical component in zero velocity update (ZUPT)-aided foot-mounted pedestrian navigation systems. Robust and accurate zero velocity detection significantly enhances the precision of pedestrian trajectory estimation. Existing zero velocity detectors based on fixed threshold and gait cycle segmentation techniques struggle to adapt to the complexity and variability of human motion. To address this issue, we propose an adaptive zero velocity detector based on deep learning. The raw inertial data possess spatial features with significant differences and temporal features that conform to certain patterns. This detector utilizes a contrastive learning (CL) network and a long short-term memory (LSTM) neural network (NN) to extract the spatial and temporal features of the inertial data, respectively. Experimental results demonstrate that the detector can achieve adaptive zero velocity detection and improve trajectory estimation accuracy regardless of individual differences or motion types. In two indoor experiments, the 2-D position error is 0.410 m for a mixed walking and running path, and the 3-D position error is 0.546 m for a mixed walking, running, and up/down stairs path.
基于时空特征融合的行人惯性导航零速度检测
零速度检测是零速度更新(ZUPT)辅助步行导航系统的关键组成部分。鲁棒性和准确性的零速度检测显著提高了行人轨迹估计的精度。现有的基于固定阈值和步态周期分割技术的零速度检测器难以适应人体运动的复杂性和可变性。为了解决这个问题,我们提出了一种基于深度学习的自适应零速度检测器。原始惯性数据具有显著差异的空间特征和符合一定规律的时间特征。该检测器利用对比学习(CL)网络和长短期记忆(LSTM)神经网络(NN)分别提取惯性数据的空间和时间特征。实验结果表明,无论个体差异或运动类型如何,该检测器都能实现自适应零速度检测,提高轨迹估计精度。在两个室内实验中,步行和跑步混合路径的二维位置误差为0.410 m,步行、跑步和上下楼梯混合路径的三维位置误差为0.546 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信