Kaiyuan Lai;Ming Chen;Delang Lin;Yurong Liu;Rongsheng Chen;Ruohe Yao
{"title":"Ultrasensitive ZnO-Nanorod-Structured Pressure Sensor by Integrating InSnZnO Thin-Film Transistor","authors":"Kaiyuan Lai;Ming Chen;Delang Lin;Yurong Liu;Rongsheng Chen;Ruohe Yao","doi":"10.1109/JSEN.2024.3486107","DOIUrl":null,"url":null,"abstract":"An ultrasensitive pressure sensor integrated thin-film transistor (TFT) was fabricated by using In-Sn–Zn-O (ITZO) thin film as an active channel layer and hydrothermally grown ZnO nanorods (ZnO NRs) as a sensing layer, in which polydimethylsiloxane (PDMS) film was used as a charge coupling layer between the ZnO NRs and the active channel. When an external mechanical pressure is applied to the ZnO NRs, piezo-induced charges generated within the ZnO NRs modulate the charge density in the channel of the ITZO TFT. This modulation effectively alters the drain-source current of the TFT, thereby enabling the sensor to detect and respond to the applied pressure. The integrated sensor exhibits a good response to external pressure, and the sensitivity can be significantly regulated by the gate-bias voltage, and the sensitivity in the subthreshold region is higher than that in the ON-state region with a regulation ratio of 157.6, the highest sensitivity of 0.57 kPa-1, and a response time of 33 ms. Meanwhile, the integrated pressure sensor can be employed to detect subtle external force stimulation, such as the generated output voltage of 250 mV under an external pressure of 35 mg. It is demonstrated that the integrated sensor has potential applications in milli-micro Newton-level force measurement and high-sensitive tactile perception.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"40549-40557"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10739953/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An ultrasensitive pressure sensor integrated thin-film transistor (TFT) was fabricated by using In-Sn–Zn-O (ITZO) thin film as an active channel layer and hydrothermally grown ZnO nanorods (ZnO NRs) as a sensing layer, in which polydimethylsiloxane (PDMS) film was used as a charge coupling layer between the ZnO NRs and the active channel. When an external mechanical pressure is applied to the ZnO NRs, piezo-induced charges generated within the ZnO NRs modulate the charge density in the channel of the ITZO TFT. This modulation effectively alters the drain-source current of the TFT, thereby enabling the sensor to detect and respond to the applied pressure. The integrated sensor exhibits a good response to external pressure, and the sensitivity can be significantly regulated by the gate-bias voltage, and the sensitivity in the subthreshold region is higher than that in the ON-state region with a regulation ratio of 157.6, the highest sensitivity of 0.57 kPa-1, and a response time of 33 ms. Meanwhile, the integrated pressure sensor can be employed to detect subtle external force stimulation, such as the generated output voltage of 250 mV under an external pressure of 35 mg. It is demonstrated that the integrated sensor has potential applications in milli-micro Newton-level force measurement and high-sensitive tactile perception.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice