PACMR: Progressive Adaptive Crossmodal Reinforcement for Multimodal Apparent Personality Traits Analysis

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Peng Shen;Dandan Wang;Yingying Xu;Shiqing Zhang;Xiaoming Zhao
{"title":"PACMR: Progressive Adaptive Crossmodal Reinforcement for Multimodal Apparent Personality Traits Analysis","authors":"Peng Shen;Dandan Wang;Yingying Xu;Shiqing Zhang;Xiaoming Zhao","doi":"10.1109/LSP.2024.3505799","DOIUrl":null,"url":null,"abstract":"Multimodal apparent personality traits analysis is a challenging issue due to the asynchrony among modalities. To address this issue, this paper proposes a Progressive Adaptive Crossmodal Reinforcement (PACMR) approach for multimodal apparent personality traits analysis. PACMR adopts a progressive reinforcement strategy to provide a multi-level information exchange among different modalities for crossmodal interactions, resulting in reinforcing the source and target modalities simultaneously. Specifically, PACMR introduces an Adaptive Modality Reinforcement Unit (AMRU) to adaptively adjust the weights of self-attention and crossmodal attention for capturing reliable contextual dependencies of multimodal sequence data. Experiment results on the public First Impressions dataset demonstrate the effectiveness of the proposed method.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"161-165"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10766613/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal apparent personality traits analysis is a challenging issue due to the asynchrony among modalities. To address this issue, this paper proposes a Progressive Adaptive Crossmodal Reinforcement (PACMR) approach for multimodal apparent personality traits analysis. PACMR adopts a progressive reinforcement strategy to provide a multi-level information exchange among different modalities for crossmodal interactions, resulting in reinforcing the source and target modalities simultaneously. Specifically, PACMR introduces an Adaptive Modality Reinforcement Unit (AMRU) to adaptively adjust the weights of self-attention and crossmodal attention for capturing reliable contextual dependencies of multimodal sequence data. Experiment results on the public First Impressions dataset demonstrate the effectiveness of the proposed method.
多模态表观人格特征分析的渐进式自适应跨模态强化
多模态表观人格特征分析是一个具有挑战性的问题。为了解决这一问题,本文提出了一种用于多模态表观人格特征分析的渐进自适应跨模态强化(PACMR)方法。PACMR采用渐进式强化策略,为不同模态之间的跨模态交互提供多层次的信息交换,从而同时强化源模态和目标模态。具体而言,PACMR引入了自适应模态强化单元(AMRU)来自适应调整自注意和跨模态注意的权重,以捕获多模态序列数据的可靠上下文依赖性。在公开的第一印象数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信