Transformer-Based Approach for Predicting Transactive Energy in Neurorehabilitation

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Naveed Ahmad Khan;Tanishka Goyal;Fahad Hussain;Prashant K. Jamwal;Shahid Hussain
{"title":"Transformer-Based Approach for Predicting Transactive Energy in Neurorehabilitation","authors":"Naveed Ahmad Khan;Tanishka Goyal;Fahad Hussain;Prashant K. Jamwal;Shahid Hussain","doi":"10.1109/TNSRE.2024.3515175","DOIUrl":null,"url":null,"abstract":"Advancements in robotic neurorehabilitation have made it imperative to enhance the safety and personalization of physical human-robot interactions (pHRI). Estimation and management of energy transfer between humans and robots is essential for enhancing safety during the rehabilitation. Traditional control methods, which rely on coordinate-based monitoring of robot velocity and external forces, often fail in unstructured environments due to their susceptibility to sensor noise and limited adaptability to individual patient needs. This paper introduces the concept of transactive energy, a coordinate-invariant entity that captures the energy dynamics between the human and the robot during robot-assisted rehabilitation and can be used for personalized robot control. However, estimation of such energy transfer is a complex process and therefore, we have developed a transformer-based model to predict the transactive potential energy. The proposed model is implemented on an ankle rehabilitation robot which is a compliant parallel robot and provides the required three rotational degrees of freedom (DOF). The model learns from the data obtained from the experiments carried out using the ankle robot with five stroke patients on two types of controllers: an impedance controller operated in zero impedance control mode and a trajectory tracking controller. This study provides a baseline, for future research on energy-based control mechanisms in pHRI applications, by utilizing the advanced deep learning models.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"46-57"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10793448","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10793448/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in robotic neurorehabilitation have made it imperative to enhance the safety and personalization of physical human-robot interactions (pHRI). Estimation and management of energy transfer between humans and robots is essential for enhancing safety during the rehabilitation. Traditional control methods, which rely on coordinate-based monitoring of robot velocity and external forces, often fail in unstructured environments due to their susceptibility to sensor noise and limited adaptability to individual patient needs. This paper introduces the concept of transactive energy, a coordinate-invariant entity that captures the energy dynamics between the human and the robot during robot-assisted rehabilitation and can be used for personalized robot control. However, estimation of such energy transfer is a complex process and therefore, we have developed a transformer-based model to predict the transactive potential energy. The proposed model is implemented on an ankle rehabilitation robot which is a compliant parallel robot and provides the required three rotational degrees of freedom (DOF). The model learns from the data obtained from the experiments carried out using the ankle robot with five stroke patients on two types of controllers: an impedance controller operated in zero impedance control mode and a trajectory tracking controller. This study provides a baseline, for future research on energy-based control mechanisms in pHRI applications, by utilizing the advanced deep learning models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信