Soft Human-Robot Handover Using a Vision-Based Pipeline

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Chiara Castellani;Enrico Turco;Valerio Bo;Monica Malvezzi;Domenico Prattichizzo;Gabriele Costante;Maria Pozzi
{"title":"Soft Human-Robot Handover Using a Vision-Based Pipeline","authors":"Chiara Castellani;Enrico Turco;Valerio Bo;Monica Malvezzi;Domenico Prattichizzo;Gabriele Costante;Maria Pozzi","doi":"10.1109/LRA.2024.3511415","DOIUrl":null,"url":null,"abstract":"Handing over objects is an essential task in human-robot collaborative scenarios. Previous studies have predominantly employed rigid grippers to perform the handover, focusing on generating grasps that avoid physical contact with people. In this paper, we present a vision-based open-palm handover solution where a soft robotic hand exploits contact with the human hand for improved grasp success and robustness. The human-robot physical interaction allows the robotic hand to slide over the human palm and firmly cage the object. The identification of the human hand plane and object pose is achieved through a versatile perception pipeline that exploits a single RGB-D camera. Through experimental trials, we show that the system achieves successful grasps over multiple objects with different geometries and textures. A comparative analysis assesses the robustness of the proposed \n<italic>soft</i>\n handover method against a baseline approach. A study with 30 participants evaluates users' perception of human-robot interaction during the handover, highlighting the effectiveness and preference for the proposed pipeline.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"891-898"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777566","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777566/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Handing over objects is an essential task in human-robot collaborative scenarios. Previous studies have predominantly employed rigid grippers to perform the handover, focusing on generating grasps that avoid physical contact with people. In this paper, we present a vision-based open-palm handover solution where a soft robotic hand exploits contact with the human hand for improved grasp success and robustness. The human-robot physical interaction allows the robotic hand to slide over the human palm and firmly cage the object. The identification of the human hand plane and object pose is achieved through a versatile perception pipeline that exploits a single RGB-D camera. Through experimental trials, we show that the system achieves successful grasps over multiple objects with different geometries and textures. A comparative analysis assesses the robustness of the proposed soft handover method against a baseline approach. A study with 30 participants evaluates users' perception of human-robot interaction during the handover, highlighting the effectiveness and preference for the proposed pipeline.
基于视觉管道的人机软切换
移交对象是人机协作场景中的一项重要任务。之前的研究主要是使用刚性抓手来完成交接,重点是产生避免与人身体接触的抓手。在本文中,我们提出了一种基于视觉的开放手掌切换解决方案,其中柔软的机器人手利用与人手的接触来提高抓取成功率和鲁棒性。人与机器人的物理交互使机器人手可以滑动到人的手掌上,牢牢地抓住物体。人体手部平面和物体姿态的识别是通过利用单个RGB-D相机的多功能感知管道实现的。实验结果表明,该系统能够成功抓取具有不同几何形状和纹理的多个物体。对比分析评估了所提出的软切换方法与基线方法的鲁棒性。一项由30名参与者参与的研究评估了用户在交接过程中对人机交互的感知,突出了拟议管道的有效性和偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信