Hari Sumartono;Mahfudz Al Huda;Berkah Fajar TK;Achmad Widodo;Fatih Dzulfiqar;Nacep Suryana;Azmi Muhamed;Illyas Md Isa;Suriani Abu Bakar;Ratno Nuryadi
{"title":"Improved Low Concentration Water Content Detection in Biodiesel Utilizing Phase-Shift-Based Capacitive Method","authors":"Hari Sumartono;Mahfudz Al Huda;Berkah Fajar TK;Achmad Widodo;Fatih Dzulfiqar;Nacep Suryana;Azmi Muhamed;Illyas Md Isa;Suriani Abu Bakar;Ratno Nuryadi","doi":"10.1109/JSEN.2024.3483290","DOIUrl":null,"url":null,"abstract":"Biodiesel has become an alternative fuel to substitute conventional fuel, yet challenges remain, particularly concerning water content. The presence of water in biodiesel can negatively impact engine spray and combustion properties and may lead to damage storage tanks. To address this issue, a phase-shift-based capacitive sensor was developed in this study to accurately measure water concentration in biodiesel. The sensor, designed with a semicylindrical electrode on a glass tube, is integrated with a signal conditioning circuit and the Digilent Analog Discovery module, allowing for real-time data analysis and enhanced sensitivity in detecting low concentrations of water concentration in biodiesel. The experimental results demonstrated a direct correlation between capacitance values and phase shift, with higher capacitance leading to more significant phase shifts. A Bode plot and simulation analysis, utilizing the transfer function, validated these experimental conditions, confirming the relationship between capacitance and signal phase shift. Additionally, experiments assessing biodiesel water content revealed a proportional increase in phase-shift angle with rising water concentration, measuring water concentration in biodiesel at levels as low as 800 ppm. These findings underscore that the phase-shift magnitude in the sensor’s output reliably detects low-concentration water content in biodiesel. The performance of this sensor is particularly advantageous due to its high sensitivity, enabling the detection of low water concentrations that are crucial for maintaining biodiesel quality. Moreover, the real-time data analysis capability provided by the Digilent Analog Discovery highlights the sensor’s practicality and efficiency for on-the-spot monitoring, offering a significant improvement over conventional methods.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"41981-41988"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10735092/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel has become an alternative fuel to substitute conventional fuel, yet challenges remain, particularly concerning water content. The presence of water in biodiesel can negatively impact engine spray and combustion properties and may lead to damage storage tanks. To address this issue, a phase-shift-based capacitive sensor was developed in this study to accurately measure water concentration in biodiesel. The sensor, designed with a semicylindrical electrode on a glass tube, is integrated with a signal conditioning circuit and the Digilent Analog Discovery module, allowing for real-time data analysis and enhanced sensitivity in detecting low concentrations of water concentration in biodiesel. The experimental results demonstrated a direct correlation between capacitance values and phase shift, with higher capacitance leading to more significant phase shifts. A Bode plot and simulation analysis, utilizing the transfer function, validated these experimental conditions, confirming the relationship between capacitance and signal phase shift. Additionally, experiments assessing biodiesel water content revealed a proportional increase in phase-shift angle with rising water concentration, measuring water concentration in biodiesel at levels as low as 800 ppm. These findings underscore that the phase-shift magnitude in the sensor’s output reliably detects low-concentration water content in biodiesel. The performance of this sensor is particularly advantageous due to its high sensitivity, enabling the detection of low water concentrations that are crucial for maintaining biodiesel quality. Moreover, the real-time data analysis capability provided by the Digilent Analog Discovery highlights the sensor’s practicality and efficiency for on-the-spot monitoring, offering a significant improvement over conventional methods.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice