High-Resolution Seawater Density Sensor Based on Michelson Interferometer

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoxue Bai;Xin Wang;Muzi Zhang;Shanshan Zhao;Mengzhen Wang;Shiyu Chen;Juan Su;Chi Wu
{"title":"High-Resolution Seawater Density Sensor Based on Michelson Interferometer","authors":"Xiaoxue Bai;Xin Wang;Muzi Zhang;Shanshan Zhao;Mengzhen Wang;Shiyu Chen;Juan Su;Chi Wu","doi":"10.1109/JSEN.2024.3486738","DOIUrl":null,"url":null,"abstract":"A novel seawater density sensor has been developed, offering high resolution and improved accuracy. The sensor employs a Michelson interferometer as the core sensing element, measuring density by directly incorporating seawater samples into the measurement path. To enhance measurement precision, standard seawater is used in the reference path to mitigate temperature and dispersion effects. The sensor system consists of a superluminescent diode and an interrogator, forming a compact, high-sampling-rate wavelength demodulation system, that is, particularly suitable for measuring seawater density with high spatiotemporal variability. However, the spectrum collected by the interrogator suffers from discontinuity. To address this issue, we designed a high-precision multi wavelength demodulation algorithm. This algorithm not only analyzes the movement of each resonance peak with a resolution of 0.0008 nm within a 70-nm detection range but also enables continuous tracking of specific resonance peaks via a dynamic adjustment mechanism. It overcomes the measurement range constraints typically faced by interference-based sensors, which are limited to a single free spectral range (FSR). The experimental validations demonstrate the sensor’s capability, achieving a density resolution of \n<inline-formula> <tex-math>$1.79 \\times 10^{-{5}}$ </tex-math></inline-formula>\n kg/m3 and an extended measurement range exceeding 35 kg/m3. The sensor’s average relative error in density measurement is 0.0144%, highlighting its effectiveness and potential for advanced oceanographic research.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"40400-40408"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10741222/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel seawater density sensor has been developed, offering high resolution and improved accuracy. The sensor employs a Michelson interferometer as the core sensing element, measuring density by directly incorporating seawater samples into the measurement path. To enhance measurement precision, standard seawater is used in the reference path to mitigate temperature and dispersion effects. The sensor system consists of a superluminescent diode and an interrogator, forming a compact, high-sampling-rate wavelength demodulation system, that is, particularly suitable for measuring seawater density with high spatiotemporal variability. However, the spectrum collected by the interrogator suffers from discontinuity. To address this issue, we designed a high-precision multi wavelength demodulation algorithm. This algorithm not only analyzes the movement of each resonance peak with a resolution of 0.0008 nm within a 70-nm detection range but also enables continuous tracking of specific resonance peaks via a dynamic adjustment mechanism. It overcomes the measurement range constraints typically faced by interference-based sensors, which are limited to a single free spectral range (FSR). The experimental validations demonstrate the sensor’s capability, achieving a density resolution of $1.79 \times 10^{-{5}}$ kg/m3 and an extended measurement range exceeding 35 kg/m3. The sensor’s average relative error in density measurement is 0.0144%, highlighting its effectiveness and potential for advanced oceanographic research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信