{"title":"Quantitative Aspects, Engineering and Optimization of Bacterial Sensor Systems","authors":"Florian Anderl;Gabriela Salvadori;Mladen Veletic;Fernanda Cristina Petersen;Ilangko Balasingham","doi":"10.1109/TMBMC.2024.3452066","DOIUrl":null,"url":null,"abstract":"Bacterial sensor systems can be used for the detection and measurement of molecular signal concentrations. The dynamics of the sensor directly depend on the biological properties of the bacterial sensor cells; manipulation of these features in the wet lab enables the engineering and optimization of the bacterial sensor kinetics. This necessitates the development of biologically meaningful computational models for bacterial sensors comprising a variety of different molecular mechanisms, which further facilitates a systematic and quantitative evaluation of optimization strategies. In this work, we dissect the detection chain of bacterial sensors, focusing on computational aspects. As a case example, we derive, supported by wet-lab data, a complete computational model for a Streptococcus mutans-based bacterial sensor. We address the engineering of bacterial sensors by mathematically investigating the impact of altered bacterial cell properties on the sensor response characteristics, specifically sensor sensitivity and response signal intensity. This is achieved through a sensitivity analysis targeting both the steady-state and transient sensor response characteristics. Alongside the demonstration of the suitability of our methodological approach, our analysis shows that an increase in sensor sensitivity through targeted manipulation of bacterial physiology often comes at the cost of generally diminished sensor response intensity.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 4","pages":"517-533"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10660497/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial sensor systems can be used for the detection and measurement of molecular signal concentrations. The dynamics of the sensor directly depend on the biological properties of the bacterial sensor cells; manipulation of these features in the wet lab enables the engineering and optimization of the bacterial sensor kinetics. This necessitates the development of biologically meaningful computational models for bacterial sensors comprising a variety of different molecular mechanisms, which further facilitates a systematic and quantitative evaluation of optimization strategies. In this work, we dissect the detection chain of bacterial sensors, focusing on computational aspects. As a case example, we derive, supported by wet-lab data, a complete computational model for a Streptococcus mutans-based bacterial sensor. We address the engineering of bacterial sensors by mathematically investigating the impact of altered bacterial cell properties on the sensor response characteristics, specifically sensor sensitivity and response signal intensity. This is achieved through a sensitivity analysis targeting both the steady-state and transient sensor response characteristics. Alongside the demonstration of the suitability of our methodological approach, our analysis shows that an increase in sensor sensitivity through targeted manipulation of bacterial physiology often comes at the cost of generally diminished sensor response intensity.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.