Liquid Metal-Enabled Galvanic Electrocrystallization of Charge-Transfer Complexes

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mahroo Baharfar*, Jiancheng Lin, Mohamed Kilani, Kourosh Kalantar-Zadeh and Guangzhao Mao*, 
{"title":"Liquid Metal-Enabled Galvanic Electrocrystallization of Charge-Transfer Complexes","authors":"Mahroo Baharfar*,&nbsp;Jiancheng Lin,&nbsp;Mohamed Kilani,&nbsp;Kourosh Kalantar-Zadeh and Guangzhao Mao*,&nbsp;","doi":"10.1021/acs.cgd.4c0121210.1021/acs.cgd.4c01212","DOIUrl":null,"url":null,"abstract":"<p >Charge-transfer complexes (CTCs), which comprise ordered assemblies of electron acceptor and donor units, represent a mature group of advanced materials. These structures offer unique features, such as intrinsic conductivity, one-dimensional morphology, and tailorable chemistry. To enable the exploitation of CTCs for real-world applications, we investigate CTC nucleation and growth and develop scalable manufacturing methods for their incorporation into electronic systems. In the present work, we combine the unique features of CTCs and liquid metals (LMs) to investigate the galvanic electrocrystallization of tetracyanoquinodimethane complexes with silver (AgTCNQ) and copper (CuTCNQ). The eutectic alloy of gallium and indium (EGaIn) has been shown to be effective in nucleating CTC crystals. EGaIn reduces TCNQ and accumulates metallic precursors at the LM/solution interface via galvanic reduction and stabilization of the metal oxide nanoparticles. This enables the efficient formation and growth of conductive CTC crystals on patterned electronics without the need for an external input. The AgTCNQ wirelike crystals could transfer the autogenous potential of EGaIn, leading to their decoration with Ag nanoparticles. The AgTCNQ crystals grow longer than the CuTCNQ crystals, enabling the interconnection of electronic tracks. This knowledge opens new pathways for scalable CTC crystallization and direct incorporation into electronic systems.</p><p >The autogenous potential generated at the interface of gallium (Ga)-based liquid metals is harnessed to trigger galvanic reduction reactions, leading to the formation of metal-tetracyanoquinodimethane charge-transfer complexes (CTCs). This liquid metal interface demonstrated exceptional properties, facilitating the nucleation and growth of CTC crystals.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 24","pages":"10225–10234 10225–10234"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.cgd.4c01212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01212","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Charge-transfer complexes (CTCs), which comprise ordered assemblies of electron acceptor and donor units, represent a mature group of advanced materials. These structures offer unique features, such as intrinsic conductivity, one-dimensional morphology, and tailorable chemistry. To enable the exploitation of CTCs for real-world applications, we investigate CTC nucleation and growth and develop scalable manufacturing methods for their incorporation into electronic systems. In the present work, we combine the unique features of CTCs and liquid metals (LMs) to investigate the galvanic electrocrystallization of tetracyanoquinodimethane complexes with silver (AgTCNQ) and copper (CuTCNQ). The eutectic alloy of gallium and indium (EGaIn) has been shown to be effective in nucleating CTC crystals. EGaIn reduces TCNQ and accumulates metallic precursors at the LM/solution interface via galvanic reduction and stabilization of the metal oxide nanoparticles. This enables the efficient formation and growth of conductive CTC crystals on patterned electronics without the need for an external input. The AgTCNQ wirelike crystals could transfer the autogenous potential of EGaIn, leading to their decoration with Ag nanoparticles. The AgTCNQ crystals grow longer than the CuTCNQ crystals, enabling the interconnection of electronic tracks. This knowledge opens new pathways for scalable CTC crystallization and direct incorporation into electronic systems.

The autogenous potential generated at the interface of gallium (Ga)-based liquid metals is harnessed to trigger galvanic reduction reactions, leading to the formation of metal-tetracyanoquinodimethane charge-transfer complexes (CTCs). This liquid metal interface demonstrated exceptional properties, facilitating the nucleation and growth of CTC crystals.

电荷转移络合物的液态金属电致电晶化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信