Effect-Based Water Quality Assessment in an Urban Tributary under Base Flow and Storm Conditions

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Cassandra Rauert, Maria König, Peta A. Neale, Kevin V. Thomas and Beate I. Escher*, 
{"title":"Effect-Based Water Quality Assessment in an Urban Tributary under Base Flow and Storm Conditions","authors":"Cassandra Rauert,&nbsp;Maria König,&nbsp;Peta A. Neale,&nbsp;Kevin V. Thomas and Beate I. Escher*,&nbsp;","doi":"10.1021/acs.estlett.4c0086610.1021/acs.estlett.4c00866","DOIUrl":null,"url":null,"abstract":"<p >Storm events can mobilize organic contaminants from hard surfaces in urban areas and can impact receiving water quality. Traditional water quality assessments predominantly rely on chemical analysis, which inadequately capture the collective effects of diverse chemical mixtures released during storm events. We applied effect-based methods (EBM) to detect arylhydrocarbon receptor (AhR) activity, estrogenic activity, neurotoxicity and oxidative stress response in water samples from an urban tributary during a storm event and compared it with base flow conditions. AhR activity and neurotoxicity peaked during the storm event, with neurotoxicity exceeding the interim effect-based trigger value and showing a high specificity of effect. This suggests unacceptable water quality during the storm event. Conversely, estrogenic activity was relatively low, and there was little difference between base flow conditions and the storm event. The absence of wastewater, industrial and agricultural inputs in the catchment suggests that the observed bioactivity was related to road runoff, specifically from two adjacent major motorways. The effects on AhR and neurotoxicity were linearly correlated with detected concentrations of 15 tire additive chemicals from an accompanying study. This study demonstrates that EBM provides complementary information to chemical analysis for water quality monitoring and that there is an increased chemical pressure on receiving water bodies during rain events in urban areas.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 12","pages":"1314–1320 1314–1320"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00866","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00866","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Storm events can mobilize organic contaminants from hard surfaces in urban areas and can impact receiving water quality. Traditional water quality assessments predominantly rely on chemical analysis, which inadequately capture the collective effects of diverse chemical mixtures released during storm events. We applied effect-based methods (EBM) to detect arylhydrocarbon receptor (AhR) activity, estrogenic activity, neurotoxicity and oxidative stress response in water samples from an urban tributary during a storm event and compared it with base flow conditions. AhR activity and neurotoxicity peaked during the storm event, with neurotoxicity exceeding the interim effect-based trigger value and showing a high specificity of effect. This suggests unacceptable water quality during the storm event. Conversely, estrogenic activity was relatively low, and there was little difference between base flow conditions and the storm event. The absence of wastewater, industrial and agricultural inputs in the catchment suggests that the observed bioactivity was related to road runoff, specifically from two adjacent major motorways. The effects on AhR and neurotoxicity were linearly correlated with detected concentrations of 15 tire additive chemicals from an accompanying study. This study demonstrates that EBM provides complementary information to chemical analysis for water quality monitoring and that there is an increased chemical pressure on receiving water bodies during rain events in urban areas.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信