Hamed Pourkhorsandi*, Vinciane Debaille, Rosalind M. G. Armytage and Jeroen de Jong,
{"title":"Cerium Stable Isotopic Composition of Non-Carbonaceous Chondrites","authors":"Hamed Pourkhorsandi*, Vinciane Debaille, Rosalind M. G. Armytage and Jeroen de Jong, ","doi":"10.1021/acsearthspacechem.4c0020610.1021/acsearthspacechem.4c00206","DOIUrl":null,"url":null,"abstract":"<p >The elemental and isotopic compositions of the rare earth elements (REE) reveal critical information about the physicochemical dynamics of the solar nebula. Cerium (Ce) is the most abundant REE in the Solar System. It has recently received renewed attention due to the decay of <sup>138</sup>La to <sup>138</sup>Ce, but its stable isotopic composition still requires a better comprehension. Here, we report the Ce stable isotopic compositions (<sup>142</sup>Ce/<sup>140</sup>Ce, expressed as δ<sup>142</sup>Ce) of 18 well-characterized non-carbonaceous chondrites including 11 enstatite chondrites (EH and EL) and 6 ordinary chondrites (H, L, and LL) collected from the Antarctic, and one rumuruti chondrite collected from the Sahara Desert. The analyzed chondrites show relatively homogeneous δ<sup>142</sup>Ce compositions within 0.01 ± 0.30‰ (<i>n</i> = 18; 2SD). This observation indicates lack of any resolvable effects of nebular physicochemical variables, such as differences in <i>f</i>O<sub>2</sub> and chemistry of the accretion regions, in different chondrites. A homogeneous isotopic composition among our analyzed samples also indicates a lack of evidence for any effects of thermal metamorphism on the δ<sup>142</sup>Ce composition of chondrites. In addition, considering a wide range of weathering degrees in our samples, we do not observe any modifications resulting from weathering. Considering the refractory and lithophile behavior of Ce and the limited variation of δ<sup>142</sup>Ce between various non-carbonaceous chondrite groups, their average will not be significantly different from the Ce isotopic composition of the Bulk Silicate Earth (BSE). We discuss the cosmochemical implications of our data and suggest extending the database of the stable isotopic composition of Ce and other REE in different types of chondrites and chondritic components.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"8 12","pages":"2452–2462 2452–2462"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00206","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The elemental and isotopic compositions of the rare earth elements (REE) reveal critical information about the physicochemical dynamics of the solar nebula. Cerium (Ce) is the most abundant REE in the Solar System. It has recently received renewed attention due to the decay of 138La to 138Ce, but its stable isotopic composition still requires a better comprehension. Here, we report the Ce stable isotopic compositions (142Ce/140Ce, expressed as δ142Ce) of 18 well-characterized non-carbonaceous chondrites including 11 enstatite chondrites (EH and EL) and 6 ordinary chondrites (H, L, and LL) collected from the Antarctic, and one rumuruti chondrite collected from the Sahara Desert. The analyzed chondrites show relatively homogeneous δ142Ce compositions within 0.01 ± 0.30‰ (n = 18; 2SD). This observation indicates lack of any resolvable effects of nebular physicochemical variables, such as differences in fO2 and chemistry of the accretion regions, in different chondrites. A homogeneous isotopic composition among our analyzed samples also indicates a lack of evidence for any effects of thermal metamorphism on the δ142Ce composition of chondrites. In addition, considering a wide range of weathering degrees in our samples, we do not observe any modifications resulting from weathering. Considering the refractory and lithophile behavior of Ce and the limited variation of δ142Ce between various non-carbonaceous chondrite groups, their average will not be significantly different from the Ce isotopic composition of the Bulk Silicate Earth (BSE). We discuss the cosmochemical implications of our data and suggest extending the database of the stable isotopic composition of Ce and other REE in different types of chondrites and chondritic components.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.