Amphiphilic Dendrimer-Based Self-Assembled Nanodrug for Responsive Drug Delivery and Chemotherapy

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mei Cong, Guangxing Xie, Bingjie Wang, Qian Liu, Hao Sun, Shaoyou Yang, Feifei Li, Yongguang Zhang, Ranxu Liu and Weidong Zhao*, 
{"title":"Amphiphilic Dendrimer-Based Self-Assembled Nanodrug for Responsive Drug Delivery and Chemotherapy","authors":"Mei Cong,&nbsp;Guangxing Xie,&nbsp;Bingjie Wang,&nbsp;Qian Liu,&nbsp;Hao Sun,&nbsp;Shaoyou Yang,&nbsp;Feifei Li,&nbsp;Yongguang Zhang,&nbsp;Ranxu Liu and Weidong Zhao*,&nbsp;","doi":"10.1021/acsanm.4c0539010.1021/acsanm.4c05390","DOIUrl":null,"url":null,"abstract":"<p >Chemotherapy continues to be a mainstay of cancer therapy. However, the anticancer efficacy of chemotherapy drugs is greatly restricted by their side effects and resistance. Nanotechnology-based combination therapy is expected to improve chemotherapy by enhancing anticancer drug efficacy, reducing drug toxicity, and overcoming drug resistance. In this study, we developed an original nanoprodrug based on an ibuprofen-modified amphiphilic dendrimer (AIP), which could self-assemble into nanoparticles to codeliver the anticancer agent doxorubicin. Owing to the protonation of amine units in amphiphilic dendrimers, the resulting nanosystem (AIP@DOX) could control the pH-stimulated release of loaded cargos in the acidic tumor microenvironment. Importantly, AIP@DOX not only significantly facilitated the cellular uptake and retention of doxorubicin but also notably decreased the drug efflux to combat drug resistance, both of which contribute to enhanced drug potency. Moreover, the high selectivity of AIP@DOX obviously reduced doxorubicin-based toxicity and markedly prolonged the survival of the mice. Benefiting from the advantageous features of both combination therapy and nanotechnology-based drug delivery, this chemo/anti-inflammatory combination nanosystem constitutes a potent therapeutic candidate for cancer treatment. This study also highlights the promise of self-assembling amphiphilic dendrimer-based vesicles for drug delivery in combination therapy to enhance drug potency.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27365–27376 27365–27376"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05390","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy continues to be a mainstay of cancer therapy. However, the anticancer efficacy of chemotherapy drugs is greatly restricted by their side effects and resistance. Nanotechnology-based combination therapy is expected to improve chemotherapy by enhancing anticancer drug efficacy, reducing drug toxicity, and overcoming drug resistance. In this study, we developed an original nanoprodrug based on an ibuprofen-modified amphiphilic dendrimer (AIP), which could self-assemble into nanoparticles to codeliver the anticancer agent doxorubicin. Owing to the protonation of amine units in amphiphilic dendrimers, the resulting nanosystem (AIP@DOX) could control the pH-stimulated release of loaded cargos in the acidic tumor microenvironment. Importantly, AIP@DOX not only significantly facilitated the cellular uptake and retention of doxorubicin but also notably decreased the drug efflux to combat drug resistance, both of which contribute to enhanced drug potency. Moreover, the high selectivity of AIP@DOX obviously reduced doxorubicin-based toxicity and markedly prolonged the survival of the mice. Benefiting from the advantageous features of both combination therapy and nanotechnology-based drug delivery, this chemo/anti-inflammatory combination nanosystem constitutes a potent therapeutic candidate for cancer treatment. This study also highlights the promise of self-assembling amphiphilic dendrimer-based vesicles for drug delivery in combination therapy to enhance drug potency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信