Automated Parametrization Approach for Coarse-Graining Soil Organic Matter Molecules

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Lorenz F. Dettmann, Oliver Kühn and Ashour A. Ahmed*, 
{"title":"Automated Parametrization Approach for Coarse-Graining Soil Organic Matter Molecules","authors":"Lorenz F. Dettmann,&nbsp;Oliver Kühn and Ashour A. Ahmed*,&nbsp;","doi":"10.1021/acs.jctc.4c0133410.1021/acs.jctc.4c01334","DOIUrl":null,"url":null,"abstract":"<p >Investigating the molecular structure of soil organic matter (SOM), along with its intramolecular interactions and interactions with other soil components and xenobiotics, is essential due to its ecological importance. However, the complexity and heterogeneity of SOM present significant challenges for systematic studies. While experimental methods are commonly employed, atomistic simulations provide a complementary approach to exploring molecular-level processes. The Vienna Soil Organic Matter Modeler 2 (VSOMM2) facilitates the construction of molecular models of SOM systems with various compositions at the atomistic scale, which can then be examined through molecular dynamics (MD) simulations. This study introduces a parametrization strategy that enables the conversion of VSOMM2-generated structures into a coarse-grained representation, thus allowing larger time and length scales to be explored. By employing a conformer search technique, direct construction and analysis of coarse-grained SOM models with diverse compositions were made possible, eliminating the need for atomistic MD simulations. To demonstrate this approach, coarse-grained SOM models were created based on selected samples from the International Humic Substances Society, considering different water content levels for each model. Comprehensive analyses, including density and potential energy profile calculations, revealed a partial correlation with the SOM compositions and demonstrated that electrostatic interactions govern the structural packing. Moreover, a local phase separation process, particularly the formation of SOM voids, was observed over several microseconds, underscoring the advantages of the coarse-graining technique.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"20 23","pages":"10684–10696 10684–10696"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Investigating the molecular structure of soil organic matter (SOM), along with its intramolecular interactions and interactions with other soil components and xenobiotics, is essential due to its ecological importance. However, the complexity and heterogeneity of SOM present significant challenges for systematic studies. While experimental methods are commonly employed, atomistic simulations provide a complementary approach to exploring molecular-level processes. The Vienna Soil Organic Matter Modeler 2 (VSOMM2) facilitates the construction of molecular models of SOM systems with various compositions at the atomistic scale, which can then be examined through molecular dynamics (MD) simulations. This study introduces a parametrization strategy that enables the conversion of VSOMM2-generated structures into a coarse-grained representation, thus allowing larger time and length scales to be explored. By employing a conformer search technique, direct construction and analysis of coarse-grained SOM models with diverse compositions were made possible, eliminating the need for atomistic MD simulations. To demonstrate this approach, coarse-grained SOM models were created based on selected samples from the International Humic Substances Society, considering different water content levels for each model. Comprehensive analyses, including density and potential energy profile calculations, revealed a partial correlation with the SOM compositions and demonstrated that electrostatic interactions govern the structural packing. Moreover, a local phase separation process, particularly the formation of SOM voids, was observed over several microseconds, underscoring the advantages of the coarse-graining technique.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信