{"title":"Quantitative Analysis of the Coupled Mechanisms of Lithium Plating, SEI Growth, and Electrolyte Decomposition in Fast Charging Battery","authors":"Yufan Peng, Meifang Ding, Ke Zhang, Huiyan Zhang, Yonggang Hu, Ying Lin, Wenxuan Hu, Yiqing Liao, Shijun Tang, Jinding Liang, Yimin Wei*, Zhengliang Gong, Yanting Jin* and Yong Yang*, ","doi":"10.1021/acsenergylett.4c0289810.1021/acsenergylett.4c02898","DOIUrl":null,"url":null,"abstract":"<p >Lithium ion battery (LIBs) degradation under fast-charging conditions limits its performance, yet systematic and quantitative studies of its mechanisms are still lacking. Here, we used dynamic electrochemical impedance spectroscopy (DEIS), mass spectrometry titration (MST), nuclear magnetic resonance (NMR), and gas chromatography–mass spectrometry (GC-MS) to reveal the degradation mechanisms in LiFePO<sub>4</sub>//graphite batteries at different charging rates. DEIS reveals three distinctive lithium plating processes: no lithium plating (1 and 2 C), lithium nucleation and growth (3 C), and lithium dendrite growth (4 to 6 C). In aged batteries, Li/Li<sub><i>x</i></sub>C<sub>6</sub> (<i>x</i> < 1), organic SEI components, and VC decomposition increase exponentially with increasing charging rate, while inorganic SEI increases slowly. Lithium dendrite growth (trigger mechanism) under fast charging conditions selectively induces VC decomposition and organic SEI formation (coupling mechanism) and results in lithium dendrite detachment forming “dead” lithium (accompanying mechanism), which together lead to rapid battery degradation at high charging rates.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 12","pages":"6022–6028 6022–6028"},"PeriodicalIF":19.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02898","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium ion battery (LIBs) degradation under fast-charging conditions limits its performance, yet systematic and quantitative studies of its mechanisms are still lacking. Here, we used dynamic electrochemical impedance spectroscopy (DEIS), mass spectrometry titration (MST), nuclear magnetic resonance (NMR), and gas chromatography–mass spectrometry (GC-MS) to reveal the degradation mechanisms in LiFePO4//graphite batteries at different charging rates. DEIS reveals three distinctive lithium plating processes: no lithium plating (1 and 2 C), lithium nucleation and growth (3 C), and lithium dendrite growth (4 to 6 C). In aged batteries, Li/LixC6 (x < 1), organic SEI components, and VC decomposition increase exponentially with increasing charging rate, while inorganic SEI increases slowly. Lithium dendrite growth (trigger mechanism) under fast charging conditions selectively induces VC decomposition and organic SEI formation (coupling mechanism) and results in lithium dendrite detachment forming “dead” lithium (accompanying mechanism), which together lead to rapid battery degradation at high charging rates.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.