Jacquelynne Cervantes-Torres, Juan A. Hernández-Aceves, Julián A. Gajón Martínez, Diego Moctezuma-Rocha, Ricardo Vázquez Ramírez, Sergio Sifontes-Rodríguez, Gemma L. Ramírez-Salinas, Luis Mendoza Sierra, Laura Bonifaz Alfonzo, Edda Sciutto* and Gladis Fragoso*,
{"title":"Exploring the Mechanisms Underlying Cellular Uptake and Activation of Dendritic Cells by the GK-1 Peptide","authors":"Jacquelynne Cervantes-Torres, Juan A. Hernández-Aceves, Julián A. Gajón Martínez, Diego Moctezuma-Rocha, Ricardo Vázquez Ramírez, Sergio Sifontes-Rodríguez, Gemma L. Ramírez-Salinas, Luis Mendoza Sierra, Laura Bonifaz Alfonzo, Edda Sciutto* and Gladis Fragoso*, ","doi":"10.1021/acsomega.4c0773610.1021/acsomega.4c07736","DOIUrl":null,"url":null,"abstract":"<p >The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on <i>in vitro</i> studies using HEK293 and HEK293-TLR4-MD2 cells and <i>in vivo</i> using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49625–49638 49625–49638"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07736","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07736","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of peptides for cancer immunotherapy is a promising and emerging approach that is being intensively explored worldwide. One such peptide, GK-1, has been shown to delay the growth of triple-negative breast tumors in mice, reduce their metastatic capacity, and reverse the intratumor immunosuppression that characterizes this model. Herein, it is demonstrated that GK-1 is taken up by bone marrow dendritic cells in a dose-dependent manner 15 min after exposure, more efficiently at 37 °C than at 4 °C, implying an entrance into the cells by energy-independent and -dependent processes through clathrin-mediated endocytosis. Theoretical predictions support the binding of GK-1 to the hydrophobic pocket of MD2, preventing it from bridging TLR4, thereby promoting receptor dimerization and cell activation. GK-1 can effectively activate cells via a TLR4-dependent pathway based on in vitro studies using HEK293 and HEK293-TLR4-MD2 cells and in vivo using C3H/HeJ mice (hyporesponsive to LPS). In conclusion, GK-1 enters the cells by passive diffusion and by activation of the transmembrane Toll-like receptor 4 triggering cell activation, which could be involved in the GK-1 antitumor properties.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.