Potential Role of Photochemistry in Environmental DNA Degradation

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Eliane Ballmer, Kristopher McNeill* and Kristy Deiner*, 
{"title":"Potential Role of Photochemistry in Environmental DNA Degradation","authors":"Eliane Ballmer,&nbsp;Kristopher McNeill* and Kristy Deiner*,&nbsp;","doi":"10.1021/acs.estlett.4c0070410.1021/acs.estlett.4c00704","DOIUrl":null,"url":null,"abstract":"<p >Given the severe loss of species richness across diverse ecosystems, there is an urgent need to assess and monitor biodiversity on a global scale. The analysis of environmental DNA (eDNA), referring to any DNA extracted from environmental samples and subsequently sequenced, is a promising method for performing such biodiversity related studies. However, a comprehensive understanding of the factors that drive distinct eDNA degradation rates under different environmental conditions is currently missing, which limits the spatiotemporal interpretations that are possible from the eDNA-based detection of species. Here, we explore what role photochemistry may play in the fate of eDNA in aquatic ecosystems. Since few eDNA photodegradation studies have been performed, we extrapolate measured photochemical degradation dynamics from dissolved organic matter (DOM) and cellular DNA to what is expected for eDNA. Our findings show that photochemistry may dominate eDNA degradation under certain environmental conditions (e.g., DOM-rich waters with no light-limitation) and that photochemical alteration of eDNA may impact microbial respiration rates and the quantitative polymerase chain reaction (qPCR)-based detection of eDNA. We therefore encourage future studies to analyze the impact of photochemistry on eDNA degradation and provide suggested research directions that could help improve the accuracy of spatiotemporal inferences from eDNA analyses.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 12","pages":"1284–1295 1284–1295"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00704","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00704","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given the severe loss of species richness across diverse ecosystems, there is an urgent need to assess and monitor biodiversity on a global scale. The analysis of environmental DNA (eDNA), referring to any DNA extracted from environmental samples and subsequently sequenced, is a promising method for performing such biodiversity related studies. However, a comprehensive understanding of the factors that drive distinct eDNA degradation rates under different environmental conditions is currently missing, which limits the spatiotemporal interpretations that are possible from the eDNA-based detection of species. Here, we explore what role photochemistry may play in the fate of eDNA in aquatic ecosystems. Since few eDNA photodegradation studies have been performed, we extrapolate measured photochemical degradation dynamics from dissolved organic matter (DOM) and cellular DNA to what is expected for eDNA. Our findings show that photochemistry may dominate eDNA degradation under certain environmental conditions (e.g., DOM-rich waters with no light-limitation) and that photochemical alteration of eDNA may impact microbial respiration rates and the quantitative polymerase chain reaction (qPCR)-based detection of eDNA. We therefore encourage future studies to analyze the impact of photochemistry on eDNA degradation and provide suggested research directions that could help improve the accuracy of spatiotemporal inferences from eDNA analyses.

鉴于各种生态系统中物种丰富度的严重丧失,迫切需要对全球范围内的生物多样性进行评估和监测。环境 DNA(eDNA)是指从环境样本中提取并随后进行测序的任何 DNA,对其进行分析是开展此类生物多样性相关研究的一种很有前景的方法。然而,目前还缺乏对不同环境条件下驱动不同 eDNA 降解率的因素的全面了解,这就限制了基于 eDNA 的物种检测所能做出的时空解释。在此,我们探讨了光化学在水生生态系统中 eDNA 的命运中可能扮演的角色。由于对 eDNA 光降解的研究很少,我们将从溶解有机物(DOM)和细胞 DNA 中测得的光化学降解动态推断出 eDNA 的预期降解动态。我们的研究结果表明,在某些环境条件下(如富含 DOM 且无光照限制的水域),光化学可能会主导 eDNA 的降解,而 eDNA 的光化学变化可能会影响微生物呼吸速率和基于聚合酶链式反应(qPCR)的 eDNA 定量检测。因此,我们鼓励今后的研究分析光化学对 eDNA 降解的影响,并提出有助于提高 eDNA 分析时空推断准确性的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信