Ultrasensitive Photoelectrochemical Biosensor for BRCA-1 Detection Based on MoS2/CdIn2S4 Heterojunctions and an FePdMnCoPt High-Entropy Alloy Nanozyme

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jia-Yan Ye, Jia-Lin Li, Yi-Hong Chen, Li-Ping Mei, Ai-Jun Wang, Pei Song* and Jiu-Ju Feng*, 
{"title":"Ultrasensitive Photoelectrochemical Biosensor for BRCA-1 Detection Based on MoS2/CdIn2S4 Heterojunctions and an FePdMnCoPt High-Entropy Alloy Nanozyme","authors":"Jia-Yan Ye,&nbsp;Jia-Lin Li,&nbsp;Yi-Hong Chen,&nbsp;Li-Ping Mei,&nbsp;Ai-Jun Wang,&nbsp;Pei Song* and Jiu-Ju Feng*,&nbsp;","doi":"10.1021/acsanm.4c0523510.1021/acsanm.4c05235","DOIUrl":null,"url":null,"abstract":"<p >Breast cancer susceptibility protein-1 (BRCA-1) is a gene directly associated with hereditary breast cancer. BRCA-1 suppresses tumorigenesis, which is crucially involved in cell replication regulation and DNA damage repair, coupled by maintaining normal cell growth. Its accurate and straightforward analysis is essential for clinical diagnosis and treatment. In this study, we fabricated photoactive Z-schemed MoS<sub>2</sub>/CdIn<sub>2</sub>S<sub>4</sub> heterojunctions via hydrothermal synthesis and comprehensively characterized their optical properties using various techniques, with a focus on understanding the interfacial charge transfer process. At the same time, FePdMnCoPt high-entropy alloy/N-doped carbon spheres (termed FePdMnCoPt HEA/NCS) were prepared by confined adsorption and pyrolysis, and their ability to mimic peroxidase (POD)-like acitvity was investigated by oxidation of 3,3′5,5′-tetramethylbenzidine (TMB) in the presence of H<sub>2</sub>O<sub>2</sub>. On such basis, a MoS<sub>2</sub>/CdIn<sub>2</sub>S<sub>4</sub>-based photoelectrochemical (PEC) sensor was established for the analysis of BRCA-1. The detection signal was greatly amplified by the catalytic precipitation reaction for 4-chloro-1-naphthol (4-CN) oxidation, as assisted by the FePdMnCoPt HEA/NCS nanozyme. The developed PEC sensor had a broad detection range of (0.1–1.0) × 10<sup>5</sup> pg mL<sup>–1</sup> with a lower detection limit of 1.00 pg mL<sup>–1</sup>. This study has developed a ultrasensitive PEC biosensor for the quantitative detection of BRCA-1, which holds great promise for clinical diagnosis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27197–27209 27197–27209"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer susceptibility protein-1 (BRCA-1) is a gene directly associated with hereditary breast cancer. BRCA-1 suppresses tumorigenesis, which is crucially involved in cell replication regulation and DNA damage repair, coupled by maintaining normal cell growth. Its accurate and straightforward analysis is essential for clinical diagnosis and treatment. In this study, we fabricated photoactive Z-schemed MoS2/CdIn2S4 heterojunctions via hydrothermal synthesis and comprehensively characterized their optical properties using various techniques, with a focus on understanding the interfacial charge transfer process. At the same time, FePdMnCoPt high-entropy alloy/N-doped carbon spheres (termed FePdMnCoPt HEA/NCS) were prepared by confined adsorption and pyrolysis, and their ability to mimic peroxidase (POD)-like acitvity was investigated by oxidation of 3,3′5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. On such basis, a MoS2/CdIn2S4-based photoelectrochemical (PEC) sensor was established for the analysis of BRCA-1. The detection signal was greatly amplified by the catalytic precipitation reaction for 4-chloro-1-naphthol (4-CN) oxidation, as assisted by the FePdMnCoPt HEA/NCS nanozyme. The developed PEC sensor had a broad detection range of (0.1–1.0) × 105 pg mL–1 with a lower detection limit of 1.00 pg mL–1. This study has developed a ultrasensitive PEC biosensor for the quantitative detection of BRCA-1, which holds great promise for clinical diagnosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信