99mTc-Labeled D-Type PTP as a Plectin-Targeting Single-Photon Emission Computed Tomography Probe for Hepatocellular Carcinoma Imaging

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
JiaLi Gong, Meilin Zhu, Lingzhou Zhao, Taisong Wang, Wenli Qiao, Qingqing Huang*, Yan Xing* and Jinhua Zhao*, 
{"title":"99mTc-Labeled D-Type PTP as a Plectin-Targeting Single-Photon Emission Computed Tomography Probe for Hepatocellular Carcinoma Imaging","authors":"JiaLi Gong,&nbsp;Meilin Zhu,&nbsp;Lingzhou Zhao,&nbsp;Taisong Wang,&nbsp;Wenli Qiao,&nbsp;Qingqing Huang*,&nbsp;Yan Xing* and Jinhua Zhao*,&nbsp;","doi":"10.1021/acs.bioconjchem.4c0049210.1021/acs.bioconjchem.4c00492","DOIUrl":null,"url":null,"abstract":"<p >Plectin, a scaffolding protein overexpressed in tumor cells, plays a significant role in hepatocellular carcinoma (HCC) proliferation, invasion, and migration. However, the use of L-type peptides for targeting plectin is hindered by their limited stability and retention. We designed a D-type plectin-targeting peptide (<sup>D</sup>PTP) and developed a novel single-photon emission computed tomography (SPECT) probe for HCC imaging. The <sup>D</sup>PTP targeting ability was evaluated <i>in vitro</i> using flow cytometry and <i>ex vivo</i> fluorescence imaging. <sup>99m</sup>Tc radiolabeling was performed using tricine and ethylenediamine-<i>N</i>,<i>N</i>′-diacetic acid (EDDA) as coligands after modification with 6-hydrazino nicotinamide (HYNIC) at the N termini of <sup>D</sup>PTP. The radiochemical purity (RCP), <i>in vitro</i> stability, and binding affinity of the prepared <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP were analyzed. Tumor uptake, metabolic stability, biodistribution, and pharmacokinetics of <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP were investigated and compared with those of <sup>99m</sup>Tc-labeled L-type PTP (<sup>99m</sup>Tc-HYNIC-PTP) in HCC tumor-bearing mice. <sup>D</sup>PTP could be efficiently radiolabeled with <sup>99m</sup>Tc using the HYNIC/tricine/EDDA system with a high RCP and good <i>in vitro</i> stability. Compared with the L-type PTP, <sup>D</sup>PTP exhibited improved targeting ability, and <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP displayed higher tumor uptake, better metabolic stability, longer blood circulation time, and lower kidney retention, resulting in superior imaging performance and biodistribution <i>in vivo</i>. <sup>99m</sup>Tc-HYNIC-<sup>D</sup>PTP has great potential as a novel SPECT probe for diagnosing HCC.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"35 12","pages":"1997–2005 1997–2005"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00492","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Plectin, a scaffolding protein overexpressed in tumor cells, plays a significant role in hepatocellular carcinoma (HCC) proliferation, invasion, and migration. However, the use of L-type peptides for targeting plectin is hindered by their limited stability and retention. We designed a D-type plectin-targeting peptide (DPTP) and developed a novel single-photon emission computed tomography (SPECT) probe for HCC imaging. The DPTP targeting ability was evaluated in vitro using flow cytometry and ex vivo fluorescence imaging. 99mTc radiolabeling was performed using tricine and ethylenediamine-N,N′-diacetic acid (EDDA) as coligands after modification with 6-hydrazino nicotinamide (HYNIC) at the N termini of DPTP. The radiochemical purity (RCP), in vitro stability, and binding affinity of the prepared 99mTc-HYNIC-DPTP were analyzed. Tumor uptake, metabolic stability, biodistribution, and pharmacokinetics of 99mTc-HYNIC-DPTP were investigated and compared with those of 99mTc-labeled L-type PTP (99mTc-HYNIC-PTP) in HCC tumor-bearing mice. DPTP could be efficiently radiolabeled with 99mTc using the HYNIC/tricine/EDDA system with a high RCP and good in vitro stability. Compared with the L-type PTP, DPTP exhibited improved targeting ability, and 99mTc-HYNIC-DPTP displayed higher tumor uptake, better metabolic stability, longer blood circulation time, and lower kidney retention, resulting in superior imaging performance and biodistribution in vivo. 99mTc-HYNIC-DPTP has great potential as a novel SPECT probe for diagnosing HCC.

Abstract Image

将 99mTc 标记的 D 型 PTP 用作肝细胞癌成像的选取素靶向单光子发射计算机断层扫描探针
Plectin是一种在肿瘤细胞中过表达的支架蛋白,在肝细胞癌(HCC)的增殖、侵袭和迁移中起重要作用。然而,利用l型肽靶向凝集素受到其有限的稳定性和保留性的阻碍。我们设计了一种d型凝集素靶向肽(DPTP),并开发了一种用于HCC成像的新型单光子发射计算机断层扫描(SPECT)探针。利用流式细胞术和离体荧光成像技术评价DPTP的体外靶向能力。在DPTP的N端用6-肼烟酰胺(HYNIC)修饰后,以三辛和乙二胺-N,N ' -二乙酸(EDDA)为配体进行99mTc放射性标记。分析了制备的99mTc-HYNIC-DPTP的放射化学纯度(RCP)、体外稳定性和结合亲和力。研究99mTc-HYNIC-DPTP与99mtc标记的l型PTP (99mTc-HYNIC-PTP)在HCC荷瘤小鼠体内的肿瘤摄取、代谢稳定性、生物分布和药代动力学。采用HYNIC/tricine/EDDA系统对DPTP进行99mTc放射性标记,具有较高的RCP和良好的体外稳定性。与l型PTP相比,DPTP具有更高的靶向能力,99mtc - hynic1 -DPTP具有更高的肿瘤摄取、更好的代谢稳定性、更长的血液循环时间和更低的肾潴留,从而具有更好的成像性能和体内生物分布。99mTc-HYNIC-DPTP作为诊断HCC的新型SPECT探针具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信