Emerging Feammox Technology: Mechanisms, Biotechnological Applications, and Future Prospects

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Ke Shi, Jianfeng Ju, Mohamed Elsamadony, Manabu Fujii, Jibao Liu, Juan Qin, Zhipeng Liao* and Changjin Ou*, 
{"title":"Emerging Feammox Technology: Mechanisms, Biotechnological Applications, and Future Prospects","authors":"Ke Shi,&nbsp;Jianfeng Ju,&nbsp;Mohamed Elsamadony,&nbsp;Manabu Fujii,&nbsp;Jibao Liu,&nbsp;Juan Qin,&nbsp;Zhipeng Liao* and Changjin Ou*,&nbsp;","doi":"10.1021/acsestengg.4c0052510.1021/acsestengg.4c00525","DOIUrl":null,"url":null,"abstract":"<p >Feammox, an innovative and energy-efficient biological ammonium removal technology, has attracted significant attention in recent years. Defined as the anaerobic ammonium oxidation coupled with Fe(III) reduction, Feammox involves Fe(III)-reducing microbes that oxidize ammonium to nitrite using ferric ions. Identified in diverse ecosystems, such as freshwater, marine, natural wetlands, and wastewater ecosystems, Feammox plays a vital role in the global nitrogen cycle. Numerous studies have investigated its performance, influencing factors, reaction mechanisms, and engineering applications. However, our understanding of the functional microorganisms and key genes involved in Feammox remains limited and controversial. Clearly identifying and characterizing the functional microorganisms responsible for the Feammox process are essential for its practical application in wastewater treatment. Therefore, this review critically analyzes and summarizes recent advances in Feammox research, with a focus on functional microorganisms, key genes, and regulation strategies. Initially, the review discusses the functional microorganisms of Feammox from the perspective of microbial cooperation. It then delves into the enzymatic and genetic mechanisms involved as well as the critical factors affecting Feammox microbial activity. Finally, regulation strategies to enhance the Feammox efficiency are systematically outlined. This comprehensive analysis of current Feammox research provides a clearer and more complete understanding of microbial Feammox, deepens the knowledge of its mechanisms, and establishes a solid foundation for its engineering application.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 12","pages":"2856–2873 2856–2873"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Feammox, an innovative and energy-efficient biological ammonium removal technology, has attracted significant attention in recent years. Defined as the anaerobic ammonium oxidation coupled with Fe(III) reduction, Feammox involves Fe(III)-reducing microbes that oxidize ammonium to nitrite using ferric ions. Identified in diverse ecosystems, such as freshwater, marine, natural wetlands, and wastewater ecosystems, Feammox plays a vital role in the global nitrogen cycle. Numerous studies have investigated its performance, influencing factors, reaction mechanisms, and engineering applications. However, our understanding of the functional microorganisms and key genes involved in Feammox remains limited and controversial. Clearly identifying and characterizing the functional microorganisms responsible for the Feammox process are essential for its practical application in wastewater treatment. Therefore, this review critically analyzes and summarizes recent advances in Feammox research, with a focus on functional microorganisms, key genes, and regulation strategies. Initially, the review discusses the functional microorganisms of Feammox from the perspective of microbial cooperation. It then delves into the enzymatic and genetic mechanisms involved as well as the critical factors affecting Feammox microbial activity. Finally, regulation strategies to enhance the Feammox efficiency are systematically outlined. This comprehensive analysis of current Feammox research provides a clearer and more complete understanding of microbial Feammox, deepens the knowledge of its mechanisms, and establishes a solid foundation for its engineering application.

Abstract Image

新兴的 Feammox 技术:机理、生物技术应用和未来展望
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信