{"title":"Manipulating the Selective Generation of Hydroxyl Radicals by Nitrogen-Doped Carbon Catalysts for Efficient Fenton-Like Reactions","authors":"Meirong Wu, Jiexiang Li, Wei Sun and Yue Yang*, ","doi":"10.1021/acsestengg.4c0039010.1021/acsestengg.4c00390","DOIUrl":null,"url":null,"abstract":"<p >Hydroxyl radical (<sup>•</sup>OH)-dominated Fenton-like reactions offer a promising strategy for the degradation of refractory organic pollutants. However, the application of nitrogen-doped carbon (NC) catalysts for <sup>•</sup>OH generation is hindered by the loss of active nitrogen species during high-temperature synthesis (900–1200 °C), and an effective strategy to promote the homolytic cleavage of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) remains necessary. Herein, an NC catalyst with abundant active nitrogen for enhanced <sup>•</sup>OH generation was prepared from zeolitic imidazolate frameworks by low-temperature pyrolysis at 800 °C, followed by acid-washing. Theoretical calculations and experimental results demonstrated that pyridinic and pyrrolic N significantly enhance the homolytic cleavage of H<sub>2</sub>O<sub>2</sub>, leading to selective and efficient generation of <sup>•</sup>OH, while graphitic N favors the less effective heterolytic cleavage pathway. Building on this finding, the active N species were precisely regulated by adjusting the pyrolysis temperature, resulting in the optimized NC-800 catalyst achieving 91.13% total organic carbon removal for extracting wastewater from spent lithium-ion battery recycling. Moreover, the activity of NC-800 was restored after simple thermal treatment, demonstrating excellent regeneration capability. This study sheds light on strengthening the pathways of NC catalysts through manipulating nitrogen species and provides an efficient approach for wastewater treatment.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 12","pages":"3001–3009 3001–3009"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydroxyl radical (•OH)-dominated Fenton-like reactions offer a promising strategy for the degradation of refractory organic pollutants. However, the application of nitrogen-doped carbon (NC) catalysts for •OH generation is hindered by the loss of active nitrogen species during high-temperature synthesis (900–1200 °C), and an effective strategy to promote the homolytic cleavage of hydrogen peroxide (H2O2) remains necessary. Herein, an NC catalyst with abundant active nitrogen for enhanced •OH generation was prepared from zeolitic imidazolate frameworks by low-temperature pyrolysis at 800 °C, followed by acid-washing. Theoretical calculations and experimental results demonstrated that pyridinic and pyrrolic N significantly enhance the homolytic cleavage of H2O2, leading to selective and efficient generation of •OH, while graphitic N favors the less effective heterolytic cleavage pathway. Building on this finding, the active N species were precisely regulated by adjusting the pyrolysis temperature, resulting in the optimized NC-800 catalyst achieving 91.13% total organic carbon removal for extracting wastewater from spent lithium-ion battery recycling. Moreover, the activity of NC-800 was restored after simple thermal treatment, demonstrating excellent regeneration capability. This study sheds light on strengthening the pathways of NC catalysts through manipulating nitrogen species and provides an efficient approach for wastewater treatment.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.