High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes
{"title":"High-Resolution Total Internal Reflection-Based Structural Coloration by Electrohydrodynamic Jet Printing of Transparent Polyethylene Glycol Microdomes","authors":"Dongho Lee, Doyoung Byun* and Dae-Hyun Cho*, ","doi":"10.1021/acsmacrolett.4c0051210.1021/acsmacrolett.4c00512","DOIUrl":null,"url":null,"abstract":"<p >Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2–9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"13 12","pages":"1634–1639 1634–1639"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Total internal reflection (TIR)-based structural coloration is a brilliant strategy to overcome the need for periodic nanostructures and complex fabrication processes. Light entering the microdome structure undergoes TIR, and owing to varying reflection paths, it exhibits a color that changes with the microdome size. Although solution-based printing techniques have been proposed to achieve this effect, they fall short of full-color realization owing to resolution limitations. Herein, we achieved 3628 dpi of full-color and high-resolution structural color images by printing transparent microdome structures with 1.2–9.9 μm diameter using electrohydrodynamic (EHD) jet printing. Additionally, high-resolution EHD jet-printed structural color images display complex encoded information, enhancing the anticounterfeiting effectiveness through their fabrication simplicity and precise control over the microdome size. Because of these advantages, this TIR-based structural coloration technique with EHD jet printing is highly suitable for anticounterfeiting applications.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.