Comparison between Compartment and Computational Fluid Dynamics Models for Simulating Reactive Crystallization Processes

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Andrea Querio, Mohsen Shiea, Antonio Buffo and Daniele Luca Marchisio*, 
{"title":"Comparison between Compartment and Computational Fluid Dynamics Models for Simulating Reactive Crystallization Processes","authors":"Andrea Querio,&nbsp;Mohsen Shiea,&nbsp;Antonio Buffo and Daniele Luca Marchisio*,&nbsp;","doi":"10.1021/acs.iecr.4c0148310.1021/acs.iecr.4c01483","DOIUrl":null,"url":null,"abstract":"<p >This work compares two different computational approaches aimed at describing the reactive crystallization or precipitation process in stirred tanks. The first approach is a full computational fluid dynamics (CFD) model coupled with population balance modeling, which is accelerated by the operator-splitting method and hybrid MPI-OpenMP parallelization. Here, emphasis is given to the hybrid MPI-OpenMP parallelization that improves parallel scalability, when the operator-splitting method is used to take relatively large time steps, despite the large separation of time-scales in such processes. The second approach is a compartment model (CM) enhanced by an automatic tool for the generation of compartments based on some relevant features of the system. The two models are compared for a case study of particular interest: the reactive coprecipitation of Ni–Mn–Co hydroxide in a continuous stirred tank, main precursor to produce cathode active materials of lithium-ion batteries. The obtained results demonstrate the effectiveness of hybrid parallelization in improving the parallel scalability of the CFD model. In addition, it is shown that the CM can produce less accurate but still relevant predictions with relatively small computational cost.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 50","pages":"21991–22004 21991–22004"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c01483","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work compares two different computational approaches aimed at describing the reactive crystallization or precipitation process in stirred tanks. The first approach is a full computational fluid dynamics (CFD) model coupled with population balance modeling, which is accelerated by the operator-splitting method and hybrid MPI-OpenMP parallelization. Here, emphasis is given to the hybrid MPI-OpenMP parallelization that improves parallel scalability, when the operator-splitting method is used to take relatively large time steps, despite the large separation of time-scales in such processes. The second approach is a compartment model (CM) enhanced by an automatic tool for the generation of compartments based on some relevant features of the system. The two models are compared for a case study of particular interest: the reactive coprecipitation of Ni–Mn–Co hydroxide in a continuous stirred tank, main precursor to produce cathode active materials of lithium-ion batteries. The obtained results demonstrate the effectiveness of hybrid parallelization in improving the parallel scalability of the CFD model. In addition, it is shown that the CM can produce less accurate but still relevant predictions with relatively small computational cost.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信