Yu-Cong Chen, Qiong Yu*, Ning Liu, Tao Li and Wenbin Yi*,
{"title":"Synthesis of 2-(3,5-Dinitrophenyl)-5-(trinitromethyl)-1,3,4-oxadiazole","authors":"Yu-Cong Chen, Qiong Yu*, Ning Liu, Tao Li and Wenbin Yi*, ","doi":"10.1021/acs.joc.4c0221210.1021/acs.joc.4c02212","DOIUrl":null,"url":null,"abstract":"<p >The trinitromethyl group plays a crucial role in the energetic material industry due to its high oxygen balance and energetic properties. This study focuses on the synthesis of dinitrophenyl-substituted trinitromethyl-1,3,4-oxadiazole. The introduction of dinitrophenyl groups to trinitromethyl-1,3,4-oxadiazole aims to improve its stability against heat-induced decomposition, a critical factor in ensuring the safe and reliable performance of energetic materials. Consequently, 2-(3,5-dinitrophenyl)-5-(trinitromethyl)-1,3,4-oxadiazole (<b>6</b>) was designed and synthesized. Compound <b>6</b> exhibited a remarkable thermal decomposition temperature of 117 °C, surpassing that of all other 1,3,4-oxadiazoles bearing the trinitromethyl group. This research highlights the incorporation of the dinitrophenyl ring to elevate the thermal decomposition temperature of the trinitromethyl group attached to the 1,3,4-oxadiazole ring, thereby presenting novel strategies for enhancing the thermal stability of these compounds.</p>","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"89 23","pages":"17475–17481 17475–17481"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.4c02212","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The trinitromethyl group plays a crucial role in the energetic material industry due to its high oxygen balance and energetic properties. This study focuses on the synthesis of dinitrophenyl-substituted trinitromethyl-1,3,4-oxadiazole. The introduction of dinitrophenyl groups to trinitromethyl-1,3,4-oxadiazole aims to improve its stability against heat-induced decomposition, a critical factor in ensuring the safe and reliable performance of energetic materials. Consequently, 2-(3,5-dinitrophenyl)-5-(trinitromethyl)-1,3,4-oxadiazole (6) was designed and synthesized. Compound 6 exhibited a remarkable thermal decomposition temperature of 117 °C, surpassing that of all other 1,3,4-oxadiazoles bearing the trinitromethyl group. This research highlights the incorporation of the dinitrophenyl ring to elevate the thermal decomposition temperature of the trinitromethyl group attached to the 1,3,4-oxadiazole ring, thereby presenting novel strategies for enhancing the thermal stability of these compounds.
期刊介绍:
Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.