Zhuoran Xu, Junyi Wang, Liheng Gao* and Wenjie Zhang*,
{"title":"Hydrogels in Alveolar Bone Regeneration","authors":"Zhuoran Xu, Junyi Wang, Liheng Gao* and Wenjie Zhang*, ","doi":"10.1021/acsbiomaterials.4c0135910.1021/acsbiomaterials.4c01359","DOIUrl":null,"url":null,"abstract":"<p >Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"10 12","pages":"7337–7351 7337–7351"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01359","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Alveolar bone defects caused by oral trauma, alveolar fenestration, periodontal disease, and congenital malformations can severely affect oral function and facial aesthetics. Despite the successful clinical applications of bone grafts or bone substitutes, optimal alveolar bone regeneration continues to be challenging due to the complex oral environment and its unique physiological functions. Hydrogels that serve as promising candidates for tissue regeneration are under development to meet the specific needs for increased bone regeneration capacity and improved operational efficiency in alveolar bone repair. In this review, we emphasize the considerations in hydrogel design for alveolar bone regeneration and summarize the latest applications of hydrogels in prevalent clinical diseases related to alveolar bone defects. The future perspectives and challenges for the application of hydrogels in the field of alveolar bone regeneration are also discussed. Deepening our understanding of these biomaterials will facilitate the advent of novel inventions to improve the outcome of alveolar bone tissue regeneration.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture