Enhancing Aqueous Stability of Anionic Surfactants in High Salinity and Temperature Conditions with SiO2 Nanoparticles

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohammed H. Alyousef, Muhammad Shahzad Kamal*, Mobeen Murtaza, Syed Muhammad Shakil Hussain, Arshad Raza, Shirish Patil and Mohamed Mahmoud, 
{"title":"Enhancing Aqueous Stability of Anionic Surfactants in High Salinity and Temperature Conditions with SiO2 Nanoparticles","authors":"Mohammed H. Alyousef,&nbsp;Muhammad Shahzad Kamal*,&nbsp;Mobeen Murtaza,&nbsp;Syed Muhammad Shakil Hussain,&nbsp;Arshad Raza,&nbsp;Shirish Patil and Mohamed Mahmoud,&nbsp;","doi":"10.1021/acsomega.4c0848410.1021/acsomega.4c08484","DOIUrl":null,"url":null,"abstract":"<p >In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO<sub>2</sub>) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO<sub>2</sub> NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (&gt;25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49804–49815 49804–49815"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08484","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08484","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In chemical-enhanced oil recovery (cEOR), surfactants are widely used but face significant stability challenges in high-salinity brine, where they often degrade or precipitate. Existing methods, such as adding cosurfactants, offer limited compatibility with anionic surfactants and raise economic concerns, creating a need for more robust solutions. This study introduces a novel approach to enhance the stability of anionic surfactants in extreme salinity conditions by incorporating silicon dioxide (SiO2) nanoparticles (NPs). Our optimized formulation effectively prevents surfactant precipitation and NP aggregation, demonstrating stability in brine with salinity as high as 57,000 ppm and temperatures up to 70 °C, thus addressing the salt tolerance issues seen with conventional anionic surfactants like sodium dodecyl sulfate (SDS). To validate our formulation, we employed multiple experimental techniques, including turbidity, ζ-potential (ZP), and hydrodynamic diameter (HDD) measurements, which confirmed the efficacy of our approach. Results indicated that an optimal SiO2 NP concentration (0.01 wt %) significantly enhanced SDS stability, with no observed aggregation or precipitation over 7 days. High absolute ZP values (>25 mV), a small HDD (∼37 nm), and a consistent turbidity profile underscored the stability and dispersion of the formulation. This nanoparticle-based method offers a cost-effective and sustainable solution for cEOR, providing enhanced surfactant stability and improved NP dispersibility under high-salinity and high-temperature conditions, representing a valuable advancement in chemical-enhanced oil recovery technology.

在化学强化采油(cEOR)中,表面活性剂被广泛使用,但在高盐度盐水中的稳定性面临巨大挑战,因为它们经常会降解或沉淀。现有的方法,如添加共表面活性剂,与阴离子表面活性剂的兼容性有限,且存在经济问题,因此需要更稳健的解决方案。本研究介绍了一种新方法,通过加入二氧化硅(SiO2)纳米粒子(NPs)来增强阴离子表面活性剂在极端盐度条件下的稳定性。我们的优化配方能有效防止表面活性剂沉淀和 NP 聚集,在盐度高达 57,000 ppm、温度高达 70 °C 的盐水中表现出稳定性,从而解决了十二烷基硫酸钠 (SDS) 等传统阴离子表面活性剂的耐盐性问题。为了验证我们的配方,我们采用了多种实验技术,包括浊度、ζ电位(ZP)和水动力直径(HDD)测量,从而证实了我们方法的有效性。结果表明,最佳 SiO2 NP 浓度(0.01 wt %)可显著提高 SDS 的稳定性,7 天内未观察到聚集或沉淀现象。高绝对 ZP 值(>25 mV)、小 HDD(∼37 nm)和一致的浊度曲线强调了制剂的稳定性和分散性。这种基于纳米粒子的方法为 cEOR 提供了一种具有成本效益和可持续性的解决方案,在高盐度和高温条件下增强了表面活性剂的稳定性,改善了 NP 的分散性,是化学强化采油技术的一项重要进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信